Let $\{a_n\} \subset \mathbb{R}$, be such that $\sum_{n=0}^\infty \lvert a_n\rvert < \infty$. Define $$f(x) = \sum_{n=0}^\infty a_nx^n \quad \text{for } x \in [0,1]$$ Prove that $f$ is of bounded variation.
Attempt:
Let $P = \{ x_0, \ldots , x_n \}$ be any partition of $[0,1]$. Then $$ \sum_{i=1}^n \left| \sum_{j=0}^\infty a_j x_i^j - \sum_{j=0}^\infty a_j x_{i-1}^j \right| = \sum_{i=1}^n \left| \sum_{j=0}^\infty a_j [ x_i^j - x_{i-1}^j ] \right|. $$ Since $\sum_{n=0}^\infty \lvert a_n\rvert < \infty$ and $x_i \in [0,1]$ $\forall i$, $$ \sum_{j=0}^\infty \left| a_j [ x_i^j - x_{i-1}^j ] \right| \leq \sum_{n=0}^\infty \lvert a_n\rvert < \infty. $$ Hence, $f(x)$ is of bounded variation since the elements of the sum are finite the index of the outer sum is also finite.
Is this a valid approach? What other ways are there to prove this?