Question:
If I want to show irreducibility of $x^4-2x^2+9$ over $\mathbb Q$ can I do it like this:
I show irreducibility in $\mathbb Z$ because by Gauss the polynomial will be also irreducible in $\mathbb Q$. The gcd of the coefficients is $1$, hence its not possible to factor an integer out of the polynomial.
The polynomial also has no roots in $\mathbb Z$, hence its not possible to write it as the product of a polynomial with degree $1$ and a polynomial with degree $3$.
If I write down $x^4-2x^2+9=(a_1x^2+b_1x+c_1)(a_2x^2+b_2x+c_2)$ then I will get a contradiction because:
We have the following equations:
$(1)$ $a_1a_2=1\Rightarrow a_1=a_2=1$
$(2)$ $a_1b_2+a_2b_1=0\Rightarrow b_1=-b_2$
$(3)$ $a_1c_2+b_1b_2+a_2c_1=-2\Rightarrow c_2-b_1^2+c_1=-2 $
$(4)$ $c_1b_2+b_1c_2=0\Rightarrow c_1b_2-c_2b_2=0 $
$(5)$ $c_1c_2=9 \Rightarrow c_1=\frac{9}{c_2} $
$(4) \text{ and } (5)$ gives $b_2(9-c_2^2)=0$ if $b_2=0$, then $b_1=0$ and (3) and (5) could not be true at the same time, hence $c_1=c_2=\pm 3$
This gives in $(3): b_1^2=2+2c_1$ in any case of $c_1$ there in no solution in terms of $b_1$ a contradiction.
So $x^4-2x^2+9$ is irreducible over $\mathbb Q$
Can someone go trough it and tell me if this is correct?