Hint mod $\,5\!:\ 4\equiv -1\equiv 9\,\Rightarrow\, \color{#c00}{4^6\equiv 1\equiv 9^6}$
and, $ $ mod $\,7\!:\ 9^3\equiv 2^3\equiv 1\,\Rightarrow\ \color{#c00}{4^6\equiv 1\equiv 9^6}$
So mod $\,35\!:\ \color{#c00}{4^3\equiv 1\equiv 9^3}\ $ by CRT $ $ (or by $\,5,7\mid a^6\!-\!1\,\Rightarrow\,{\rm lcm}(5,7)=35\mid a^6\!-\!1)$
So mod $\,35\!:\ \color{#c00}4^{\color{#c00}3j} - \color{#c00}9^{\color{#c00}9^k}\equiv \color{#c00}1^{j}-\color{#c00}1^{k} \equiv 1$
In particular it's true if the exponents are even with digit sum divisible by $\,3,\,$ as in your case.
Remark $\ $ Since you say congruence arithmetic is unfamiliar, below is a more elementary proof using only that $\,a-b\mid a^n-b^n.\ $ Suppose $\ 2\mid j\!-\!i \ge 0.\ $ Then
$\qquad\quad \begin{align} 9^{3j}-4^{3i} = &\ 9^{3j}-4^{3j}\ +\ 4^{3j}-4^{3i}\\
= &\ \color{#0a0}{9^{3j}-4^{3j}}\ +\ 4^{3i}\,(\color{#c00}{4^{3(j-i)}\!-1})\end{align}$
But $\ 5,7\mid 9^3-4^3\mid \color{#0a0}{9^{3j}-4^{3j}}$ and $\,5,7\mid 4^6-1\mid \color{#c00}{4^{3(j-i)}\!-1}\,$ by $\,2\mid j\!-\!i\,\Rightarrow\, 6\mid 3(j\!-\!i) $
Thus $\,5,7\,$ also divide their sum, therefore their lcm = $\,5\cdot 7 = 35\,$ divides their sum.