I am having trouble, I tried using the fact that the $gcd(30, 22) = 2$ but I have been stuck here for a bit now.
$22^{201} \equiv x \mod (30)$
$22^{201} \equiv 22*22^{200} mod (30)$
How can I proceed?
I am having trouble, I tried using the fact that the $gcd(30, 22) = 2$ but I have been stuck here for a bit now.
$22^{201} \equiv x \mod (30)$
$22^{201} \equiv 22*22^{200} mod (30)$
How can I proceed?
$[22^{201}]_{30}$
$ = [484^{100}]_{30} \cdot [22]_{30}$ and $[484] = 16 \cdot 30 + [4]$
$ = [64^{33}]_{30} \cdot [22 \cdot 4]_{30}$ and $[64] = 2 \cdot 30 + [4]$ and $[88] = 2 \cdot 30 + [28]$
$ = [4^{33}]_{30} \cdot [28]_{30}$
$ = [64^{11}]_{30} \cdot [28]_{30}$
$ = [4^{11}]_{30} \cdot [28]_{30}$
$ = [64^{3}]_{30} \cdot [28 \cdot 4 \cdot 4]_{30}$ and $[112] = 3 \cdot 30 + [22]$
$ = [4^{3}]_{30} \cdot [22 \cdot 4]_{30}$
$ = [64]_{30} \cdot [28]_{30}$
$ = [4 \cdot 28]_{30}$
$ = [22]_{30}$
We have $22^2=484\equiv 4\pmod{30}$ Then $4^3\equiv 4\pmod{30}$ and this means $22^6\equiv 4\pmod{30}$ and $201=33\times 6+3$ so $22^{201}=(22^6)^{33}+22^3$. This gives $$22^{201}\equiv 4^{33}\times 22^3\pmod{30}$$ Using the above $4^{33}\equiv 4^{11}\equiv (4^3)^{3}\times 4^2\equiv 4$ and $22^3\equiv4\times22\equiv 28\pmod{30}$ and we can conclude that $$22^{201}\equiv 4\times 28\equiv -8\equiv 22 \pmod{30}$$