Let's solve the more general case of $\sum\limits_{n=0}^\infty\frac{z^{an+b}}{(an+b)!}, b<a$. Through repeated differentiation, it can be seen that it satisfies the differential equation $$y=y^{(a)}, y^{(b)}(0)=1, y^{(k)}(0)=0, k<a, k\neq b$$
If we try the first sum of yours ($a=3,b=0$), we have
$$y=y^{(3)},y(0)=1, y'(0)=0, y''(0)=0$$
which implies that
$$\sum_{n=0}^\infty\frac{x^{3n}}{(3n)!}=\frac13\,{{\rm e}^{x}}+\frac23\,{{\rm e}^{-\frac12\,x}}\cos \left( \frac12\,\sqrt {3}x
\right)
$$
Plugging in $x=2$ gets us
$$\sum_{n=0}^\infty\frac{2^{3n}}{(3n)!}=\sum_{n=0}^\infty\frac{8^{n}}{(3n)!}=\frac13e^2+\frac2{3e}\cos(\sqrt3)$$
As for your second question we can solve the differential equation for $a=3,b=1$ to get (it turns out to be the second derivative of the first function)
$$\sum_{n=0}^\infty\frac{x^{3n+1}}{(3n+1)!}=\frac13\,{{\rm e}^{x}}-\frac13\,{{\rm e}^{-\frac12\,x}}\cos \left( \frac12\,\sqrt {3}x
\right)+\frac1{\sqrt3}\,{{\rm e}^{-\frac12\,x}}\sin \left( \frac12\,\sqrt {3}x
\right)$$
Plugging in $x=3$ and dividing by 3 we get
$$\frac13\sum_{n=0}^\infty\frac{3^{3n+1}}{(3n+1)!}=\sum_{n=0}^\infty\frac{27^{n}}{(3n+1)!}=\frac19\,{{\rm e}^{3}}-\frac19\,{{\rm e}^{-\frac32}}\cos \left( \frac32\,\sqrt {3}
\right)+\frac1{3\sqrt3}\,{{\rm e}^{-\frac32}}\sin \left( \frac32\,\sqrt {3}
\right)$$