One way to solve this is to note that $(3,6)=3$ and solve, for $w=x+2y$,
$$
3w+5z=7\tag{1}
$$
Using the Extended Euclidean Algorithm as implemented in this answer
$$
\begin{array}{r}
&&1&1&2\\\hline
1&0&1&-1&3\\
0&1&-1&2&-5\\
5&3&2&1&0\\
\end{array}\tag{2}
$$
Thus, the second to last column gives a particular solution:
$$
3(2)+5(-1)=1\stackrel{\times7}{\implies}3(14)+5(-7)=7\tag{3}
$$
and the last column gives the homogenous solution, which we add to get the general solution:
$$
3(\overbrace{14-5k}^w)+5(\overbrace{-7+3k}^z)=7\tag{4}
$$
Now, we solve for $w=1x+2y=14-5k$ in the same manner we got from $(1)$ to $(4)$:
$$
1(\overbrace{14-5k+2j}^x)+2(\overbrace{0-j}^y)=\overbrace{14-5k}^w\tag{5}
$$
Multiply $(5)$ by $3$ and plug into $(4)$:
$$
3(\overbrace{14-5k+2j}^x)+6(\overbrace{-j}^y)+5(\overbrace{-7+3k}^z)=7\tag{6}
$$
Other answers will come from a reversible change of variables. The answer in $(6)$ is
$$
\begin{bmatrix}
x\\
y\\
z
\end{bmatrix}
=
\color{#C000FF}
{\begin{bmatrix}
14&2&-5\\
0&-1&0\\
-7&0&3
\end{bmatrix}}
\begin{bmatrix}
1\\
j'\\
k'
\end{bmatrix}\tag{7}
$$
The first "solution" above does not work (mapping $l\leftrightarrow j$):
$$
\begin{align}
3x+6y+5z
&=3(5k+2j+14)+6(-j)+5(-7-k)\\
&=7+10k\tag{8}
\end{align}
$$
If we change $z$ to $-7-3k$, the first solution above is
$$
\begin{align}
\begin{bmatrix}
x\\
y\\
z
\end{bmatrix}
&=
\begin{bmatrix}
14&2&5\\
0&-1&0\\
-7&0&-3
\end{bmatrix}
\begin{bmatrix}
1\\
j\\
k
\end{bmatrix}\\
&=
\color{#C000FF}
{\begin{bmatrix}
14&2&-5\\
0&-1&0\\
-7&0&3
\end{bmatrix}}
\begin{bmatrix}
1&0&0\\
0&1&0\\
0&0&-1
\end{bmatrix}
\begin{bmatrix}
1\\
j\\
k
\end{bmatrix}\tag{9}
\end{align}
$$
which is the solution in $(6)$ under the reversible change $(j,k)=(j',-k')$.
The solution from Wolfram Alpha is
$$
\begin{align}
\begin{bmatrix}
x\\
y\\
z
\end{bmatrix}
&=
\begin{bmatrix}
0&1&0\\
2&2&5\\
-1&-3&-6
\end{bmatrix}
\begin{bmatrix}
1\\
j\\
k
\end{bmatrix}\\
&=
\color{#C000FF}
{\begin{bmatrix}
14&2&-5\\
0&-1&0\\
-7&0&3
\end{bmatrix}}
\begin{bmatrix}
1&0&0\\
-2&-2&-5\\
2&-1&-2
\end{bmatrix}
\begin{bmatrix}
1\\
j\\
k
\end{bmatrix}\tag{10}
\end{align}
$$
which is the solution in $(6)$ under the change $(j',k')=(-2-2j-5k,2-j-2k)$
and since
$$
\begin{bmatrix}
1&0&0\\
-2&-2&-5\\
2&-1&-2
\end{bmatrix}^{-1}
=
\begin{bmatrix}
1&0&0\\
14&2&-5\\
-6&-1&2
\end{bmatrix}\tag{11}
$$
the change of variables is reversible: $(j,k)=(14+2j'-5k',-6-j'+2k')$.
if i now from the transformation matrix subtract the first column from the second column i get:
\begin{bmatrix} -2&0&-5\ 0&1&0\ 1&-1&3 \end{bmatrix}\begin{bmatrix} -7 \ j\ k \end{bmatrix}
But this produces not a correct solution, but is a valid transformation since it is invertible, do i need to modify the vector too?
– user3680510 Feb 11 '15 at 21:3261x+151y+167z=11111
\begin{bmatrix} -411107&-119&-3\ 55555&16&-1\ 99999&29&2 \end{bmatrix} \begin{bmatrix} 1\ j\ k \end{bmatrix}
Or do you see a way to transform this? If not what is different to the other example where such a form exists?
– user3680510 Feb 11 '15 at 23:25