1

When we have the function $\frac{\sin x}{x}$ and we want to check it ass for the integrability do we have to do the following to see if it is in $L^1(\mathbb{R})$? $$\int_{\mathbb{R}}| \frac{\sin x}{x}|\leq \int_{\mathbb{R}} dx=\mu (\mathbb{R})$$ is it correct so far?? How do we continue??

saz
  • 120,083
Mary Star
  • 13,956

2 Answers2

3

Hint

1) Prove the following inequality $$ \int_\mathbb{R} \left| \frac{\sin(x)}{x} \right| dx \geq 2 \sum_{k=1}^\infty \frac{2}{k \pi}. $$

To prove it observe that $$\int_\mathbb{R} \left| \frac{\sin(x)}{x} \right| dx = 2 \int_0^\infty \frac{|\sin(x)|}{x} dx = 2 \sum_{k=0}^\infty \int_0^\pi \frac{|\sin(x+k\pi)|}{x+k\pi} dx.$$

2) Examine the behavior of the series.

  • @Mary Star I edited the answer to extend the hint. – Giovanni De Gaetano Feb 15 '15 at 09:59
  • How could I use your answer to show that $f(x)=\frac{\sin\left(\frac{1}{t}\right)}{t}$ is not Lebesgue Integrable on (0,1)? https://math.stackexchange.com/questions/2235812/show-improperly-riemman-integrable-function-is-not-lebesgue-integrable – Alfredo Lozano Apr 16 '17 at 20:39