The problem states: Let $f(x),g(x)$ be Riemann integrable over $[a,b]$. Define $h:[a,b]\rightarrow\mathbb{R}$ as: $$h(x)=\max(f(x),g(x))$$
Prove that $h(x)$ is Riemann integrable over [a,b]
-I know that because $f$ and $g$ are integrable, then:
$\forall \epsilon>0$, there exists a partition P so that: $U(f,P)-L(f,P)<\epsilon$
$\forall \epsilon\prime>0$, there exists a partition P$\prime$ so that: $U(g,P\prime)-L(g,P\prime)<\epsilon\prime$
I also know that: $maxf(x)\le\sup f(x)$ and $maxg(x)\le\sup g(x)$ where both functions are defined.
Any hints on how should Iaproach this proof? Thanks