It suffices to prove $\,f = ax+b\,$ is prime in $\,A[x],\,$ which follows as below.
Theorem $ $ Suppose that $\,D\,$ is a domain, and $\,0\ne a,b \in D\,$ satisfy $\,a,b\mid c\, \color{#c00}\Rightarrow\, ab\mid c\,$ for all $\,c \in D.\,$ Then $\, f = ax+b\,$ is prime in $\,D[x].$
Proof $\ $ Assume $\,f\mid gg'\,$ for $\,g,g'\! \in D[x].\,$ $\,f = a(x + \frac{b}a)= a\bar f$ in $\,\bar D = D[a^{-1}]\,$ where $\,\bar f\,$ is prime, hence $\,\bar f\mid g\,$ or $\,\bar f\mid g'\,;\,$ wlog $\,\bar f\mid g,\,$ so $\, g = \bar f \bar h,\ \bar h \in \bar D[x].\, $ Scaling by $a^n$ for big enough $\,n\,$ yields $\, a^n g = f h,\ h\in D[x],\,$ so $\,f\mid a^n g\,\Rightarrow\,f\mid g,\,$ by iterating below Lemma. Hence $\,f\,$ is prime $\ \ $ QED
Lemma $\,\ f\mid ag\,\Rightarrow\,f\mid(f\!-\!ax)g=bg\,\Rightarrow\,f\mid ag,bg\,\Rightarrow\,a,b\mid abg/f\,\color{#c00}\Rightarrow\,ab\mid abg/f\,\Rightarrow\,f\mid g$
Remark $ $ If localizations like $\,D[a^{-1}]\,\cong\, D[\,t]/(at\!-\!1)\,$ are unfamiliar then we can eliminate it by instead using the nonmonic form of the polynomial division algorithm, namely $\, a^n g = q\, f + r\,$ where $\,a\,$ is the lead coef of $\,f,\,$ which has a simple inductive proof. I presented it here in local form so to show how this Theorem generalizes to localizations. The results there generalize as below. Above we used $\, S^{-1}D = D[a^{-1}],\,$ whereas there we used the $\,S^{-1}D = K = $ full fraction field.
Theorem $\,\ f\,$ is prime in $\,D[x] \!\iff\! f\,$ is prime in $\,S^{-1} D[x]\,$ and $\,f\,$ is $S$-superprimitive.
where $\,f\,$ is $\,S$-superprimitive if it satisfies one of the following equivalent properties
$(1)\quad c\mid gf\,\Rightarrow\, c\mid g\quad$ for all $\ c\in S,\ g\in D[x]$
$(2)\quad c\mid df\,\Rightarrow\, c\mid d\quad$ for all $\ c\in S,\ d\in D$
$(3)\quad f\mid g\,$ in $\,S^{-1} D[x]\,\Rightarrow\, f\mid g\,$ in $\,D[x]\quad $ for all $\, g\in D[x]$
$(4)\quad f\mid cg\,\Rightarrow\,f\mid g\quad$ for all $\ c\in S,\ g\in D[x]$
$(5)\quad gf\in D[x]\,\Rightarrow\, g \in D[x]\quad$ for all $\,g\in S^{-1}D[x]$