Here is another calculation, based on how $\mu_F$ behaves under scaling $x \to \frac{1}{3} x$ and reflection $x \to 1-x$.
Let $M_n = \int_0^1 x^n \, d\mu_F(x).$
Case $n=0$ is trivial: $M_0 = \int_0^1 d\mu_F(x) = 1.$
Note also that we have $\int_0^{1/3} d\mu_F(x) = \frac{1}{2}.$
Case $n=1$ we solve by splitting the integral in two parts:
$$
M_1 = \int_0^1 x \, d\mu_F(x)
= \int_0^{1/3} x \, d\mu_F(x) + \int_{2/3}^1 x \, d\mu_F(x)
$$
The first term we rewrite using scaling:
$$
\int_0^{1/3} x \, d\mu_F(x) = \{ x = \frac{1}{3} y \}
= \int_0^1 (\frac{1}{3}y) \, d\mu_F(\frac{1}{3}y)
= \int_0^1 \frac{1}{3}y \, \frac{1}{2} d\mu_F(y)
= \frac{1}{6} \int_0^1 y \, d\mu_F(y)
= \frac{1}{6} M_1
$$
and the second term using reflection:
$$
\int_{2/3}^1 x \, d\mu_F(x)
= \int_{1/3}^0 (1-z) \, d\mu_F(1-z)
= \int_0^{1/3} (1-z) \, d\mu_F(z) \\
= \int_0^{1/3} d\mu_F(z) - \int_0^{1/3} z \, d\mu_F(z)
= \frac{1}{2} - \frac{1}{6} M_1
$$
Thus,
$$
M_1 = \frac{1}{6} M_1 + \left( \frac{1}{2} - \frac{1}{6} M_1 \right) = \frac{1}{2}.
$$
Case $n=2$ is solved in the same way:
$$
M_2 = \int_0^1 x^2 \, d\mu_F(x)
= \int_0^{1/3} x^2 \, d\mu_F(x) + \int_{2/3}^1 x^2 \, d\mu_F(x)
$$
where
$$
\int_0^{1/3} x^2 \, d\mu_F(x)
= \int_0^1 (\frac{1}{3}y)^2 \, d\mu_F(\frac{1}{3}y)
= \int_0^1 \frac{1}{9}(y)^2 \, \frac{1}{2}d\mu_F(y)
= \frac{1}{18} \int_0^1 y^2 \, d\mu_F(y)
= \frac{1}{18} M_2
$$
and
$$
\int_{2/3}^1 x^2 \, d\mu_F(x)
= \int_{1/3}^0 (1-z)^2 \, d\mu_F(1-z)
= \int_0^{1/3} (1-z)^2 \, d\mu_F(z) \\
= \int_0^{1/3} d\mu_F(z) - 2 \int_0^{1/3} z \, d\mu_F(z) + \int_0^{1/3} z^2 \, d\mu_F(z)
= \frac{1}{2} - 2 \cdot \frac{1}{6} M_1 + \frac{1}{18} M_2.
$$
Thus,
$$
M_2 = \frac{1}{18} M_2 + \left( \frac{1}{2} - 2 \cdot \frac{1}{6} M_1 + \frac{1}{18} M_2 \right)
= \frac{1}{9} M_2 + \frac{1}{2} - 2 \cdot \frac{1}{6} \cdot \frac{1}{2}
= \frac{1}{9} M_2 + \frac{1}{3}
$$
so
$$\frac{8}{9} M_2 = \frac{1}{3}$$
i.e.
$$M_2 = \frac{9}{8} \cdot \frac{1}{3} = \frac{3}{8}.$$