I am trying to prove that $$ \lim _{n\rightarrow \infty}\int \limits_{0}^{\infty}\frac{\sin (x^{n})}{x^{n}}dx=1 .$$
My Attempt: Since $$ \lim _{a\rightarrow 0}\frac{\sin a}{a}=1 $$ and for each $ x\in [0,1) $, $$ \lim _{n\rightarrow \infty}x^{n}=0 $$ we can obtain $$ \lim _{n\rightarrow \infty}\frac{\sin (x^{n})}{x^{n}}=1 .$$ Also since for each $ a\in \mathbb{R} $, $ |\sin a|\leq |a| $, we have that for each $ x\in [0,1) $ and $ n\in \mathbb{N} $, $ \left |\frac{\sin (x^{n})}{x^{n}}\right |\leq 1 $.
Then by dominated convergence theorem, $$ \lim _{n\rightarrow \infty}\int \limits_{0}^{1}\frac{\sin (x^{n})}{x^{n}}dx=\int \limits_{0}^{1}1dx=1. $$
So, I have to show that $$ \lim _{n\rightarrow \infty}\int \limits_{1}^{\infty}\frac{\sin (x^{n})}{x^{n}}dx=0. $$
But, I still haven't managed to show it. So, could anyone give me some help ?
Any hints/ideas are much appreciated.
Thanks in advance for any replies.