I see that it's not always the case for $s_{1}\leftrightarrow s_{2}$ is a tautology. As if I have $s_{1}:p$ and $s_{2}:q$, I have the following truth table: $$ \begin{array}{c|c|c|c|c|c|c} p & q & \neg p & \neg q & (\neg p \lor q) & (\neg q \lor p) & (\neg p \lor q)\land(\neg q \lor p) \\ \hline 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ \end{array} $$
(In the truth tables I replace $p\leftrightarrow q$ with $(\neg p \lor q)\land(\neg q \lor p)$, as $p\leftrightarrow q\Longleftrightarrow(\neg p \lor q)\land(\neg q \lor p)).$
But there are instances for which they are, i.e., let $s_{1}: p \lor \neg p$ and $s_{2}: q \lor \neg q$, we have the following truth table
$$ \begin{array}{c|c|c|c|c|c|c|c|c} p & \neg p & q & \neg q & p\lor \neg p & q \lor \neg q & (\neg p \lor q) & (\neg q \lor p) & (\neg p \lor q) \land (\neg q \lor p) \\ \hline 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ \end{array} $$
So from this result can I conclude the following two statements:
$\textbf{(1)}$ If $s_{1},s_{2}$ are statements and $s_{1}\leftrightarrow s_{2}$ is a tautology, then $s_{1} \Longleftrightarrow s_{2}$?
$\textbf{(2)}$ If $s_{1}\Longleftrightarrow s_{2}$ then $s_{1}\leftrightarrow s_{2}$ is a tautology?
Thanks.