0

Is $(e^\pi-\pi^e)$ positive or negative? why?

Alireza
  • 153

1 Answers1

1

If $a>b\geq e$, then $a^b<b^a$. It follows from the fact that the function $$ f(x)=\frac{\log x}{x} $$ is decreasing over $I=(e,+\infty)$, since: $$ f'(x) = \frac{1-\log x}{x^2} $$ is negative over $I$.

Jack D'Aurizio
  • 353,855