$$S = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{99}}{n^{100}} = \lim_{n \to \infty} \frac{1}{n^{100}} \cdot \overbrace{\sum_{k=1}^{n} k^{99}}^{\text{I}}$$
$$I = \sum_{k=1}^{n} k^{99} = \frac{1}{99} \cdot \sum_{j=0}^{99} (-1)^j \binom{100}{j} B_j n^{100 - j}$$
But that seems AWFULLY, difficult? What can be done?
$$\left|\frac1n\sum_{k=1}^n f\left(\frac{k}{n}\right) - \int_0^1 f(x) dx \right| \le \frac1n |f(0)-f(1)|$$
– achille hui Feb 07 '15 at 19:20