I am working on proving different mathematical formulas. I am currently working on proving that $\frac{d}{dx} e^x = e^x$ . This is my proof so far:
$$\frac{d}{dx} e^x = \lim_{h \to0}\frac{e^{x+h} - e^{x}}{h} = $$ $$ \lim_{h \to 0} \frac{e^x(e^h-1)}{h} = e^x \cdot\lim_{h \to 0} \frac{(e^h-1)}{h}$$ Need to prove that $\lim_{h \to 0} \frac{(e^h-1)}{h} = 1$.
Using substitution: $h = \ln(t+1)$
$$\lim_{t \to 0}\frac{t}{\ln(t+1)}$$
$$\lim_{t \to 0}\frac{t \cdot \frac{1}{t}}{\ln(t+1)\cdot \frac{1}{t}}$$
$$\lim_{t \to 0}\frac{1}{\ln(t+1)^{\frac{1}{t}}}$$
$$\frac{1}{\ln(e)} = \frac{1}{1} = 1$$
$\blacksquare$
Am I allowed to say $t \to 0$ in a proof when it is actually $\ln(t+1) \to 0$? Do you have any corrections on the proof?