0

As we know, $$\ln(1+x)=\sum_{n=1}^{\infty}\frac{(-1)^{n+1}x^n}{n}$$ when $|x|<1$, but what for a function $\log(1+ae^{bx})$? can we use it here?If not, then how'll we expand it?

RE60K
  • 17,716

1 Answers1

2

$$\ln(1+ae^{bx})=\ln(1+a+abx+ab^2x^2/2+...\\ =\ln((1+a)(1+\frac{abx}{a+1}+\frac{ab^2x^2}{2(a+1)}+...\\ =\ln(1+a)+\ln(1+\frac{abx}{1+a}+\frac{ab^2x^2}{2(1+a)}+...\\ =\ln(1+a)+\left(\frac{abx}{1+a}+\frac{ab^2x^2}{2(1+a)}\right)-\frac{(abx)^2}{2(1+a)^2}+...$$ The last line is because $\ln(1+z)=z-z^2/2+...$

When $x$ is large, $$\ln(1+ae^{bx})=bx+\ln(a)+\ln\left(1+\frac{e^{-bx}}a\right)\\ =bx+\ln(a)+e^{-bx}/a-e^{-2bx}/(2a^2)+...$$

Empy2
  • 50,853