Any idea how do I prove the following?
$$ \lim_{x \to 0}\frac{e^x-1}{x}=1 $$
Thanks
Any idea how do I prove the following?
$$ \lim_{x \to 0}\frac{e^x-1}{x}=1 $$
Thanks
Using the series expansion of $e^x$:
$$ \lim_{x \to 0}\frac{x + \frac{x^2}{2} + \frac{x^3}{6} + ~...}{x} = \lim_{x \to 0} 1 + \frac{x}{2} + \frac{x^2}{6} + ~... = 1 $$
From l'Hospital's rule:
$$(e^{x}-1)'=e^{x}$$
$$x'=1$$
So you get: $\frac{e^{x}}{1} \longrightarrow1$, when $x \longrightarrow0$, because $e^0=1$.