I have to prove that for a triangle, $$a\cos A+b\cos B+c\cos C=\frac{8\Delta^2}{abc}$$ where $a,b,c$ are the lengths of the sides opposite to the angles A,B,C respectively. I followed the following procedure for the LHS: $$ \begin {align} a\cos A&+b\cos B+c\cos C\\ &= a\left[2\cos^2\left(\frac A2\right)-1\right]+b\left[2\cos^2\left(\frac B2\right)-1\right]+c\left[2\cos^2\left(\frac C2\right)-1\right]\\ &=a\left[2 \frac{s(s-a)}{bc} -1\right]+b\left[2 \frac{s(s-b)}{ac} -1\right]+c\left[2 \frac{s(s-c)}{ab} -1\right]\\ &=2a\left (\frac{s(s-a)}{bc}\right)+2b\left (\frac{s(s-b)}{ac}\right)+2c\left( \frac{s(s-c)}{ab}\right)-2s\\ &=\frac{2s}{abc}[a^2(s-a)+b^2(s-b)+c^2(s-c)-abc] \end{align}$$ where $$s=\frac{a+b+c}{2}$$
I want to convert that last equation into Heron's formula: $$\Delta=\sqrt{s(s-a)(s-b)(s-c)}$$
But I'm stuck there. Any help please?