prove that $l.c.m.(ab,ad)=a[l.c.m.(b,d)]$.
my work so far:
I know $l.c.m.(ab,ad)=a^2bd/g.c.d.(ab,ad)$ and ∃ $x,y\in \mathbb{Z}$ | $g.c.d.(ab,ad)=abx+ady$
∴ we now have $l.c.m.(ab,ad)=abd/(bx+dy)$
So we know that ∃ $x,y\in \mathbb{Z}$ | $bx+dy=c$ for some $c\in \mathbb{Z}$. If $c=g.c.d.(b,d)$ we are done. But, how do we know that the $x$ and $y$'s are | $c=g.c.d.(b,d)$?
here are the relevant corollaries:
1) if $d=g.c.d.(a,b)$, then ∃ $x,y\in \mathbb{Z}$ | $ax+by=d$
2)In order that ∃ $x,y\in \mathbb{Z}$ | $ax+by=c$ it is necessary and sufficient that d|c, where $d=g.c.d.(a,b)$.
Thank you in advance.