11

I'm something like 90% sure that this diophantine equation has nontrivial solutions:

$3(x^2+y^2+z^2)=10(xy+yz+zx)$

However, I have not been able to find a solution using my calculator. I would greatly appreciate if someone could try to find one using a program. Or maybe you can just guess one that happens to work?

Thanks!

EDIT: By nontrivial I mean no $0$'s. (Credits to Slade for reminding me to define this)

EDIT2: In fact, you are free to find a nontrivial solution to $(3n-3)(x^2+y^2+z^2)=(9n+1)(xy+yz+zx)$ where $n\equiv 1\pmod 5$ is a positive integer. The one I posted above is the case $n=5(2)+1$, but you will make my day if you can find a nontrivial solution for any $n=5k+1$.

Is Ne
  • 2,668

6 Answers6

10

As far as I understand - this is the site for solving the problem. Programming and calculation using the computer is not mathematics. If you want to calculate - there is a special section. https://mathematica.stackexchange.com/questions

Here it is necessary to solve the equations.

For the equation:

$$3(x^2+y^2+z^2)=10(xy+xz+yz)$$

The solution is simple.

$$x=4ps$$

$$y=3p^2-10ps+7s^2$$

$$z=p^2-10ps+21s^2$$

$p,s - $ any integer which we ask.

Why make a program? What's the point? For what?

individ
  • 4,301
5

When he wrote the equation he meant probably that entry.

$$q(x^2+y^2+z^2)=(3q+1)(xy+xz+yz)$$

It turns out, this equation has a connection with the Pell equation:

$$p^2-5s^2=\pm1$$

For $+1$ it is necessary to use the first solution $(9 ; 4)$. For $-1$ it is necessary to use the first solution $(2 ; 1)$. Knowing what the decision can be found on the following formula.

$$p_2=9p_1+20s_1$$

$$s_2=4p_1+9s_1$$

Using the solutions of the Pell equation can be found when there are solutions. $q=\mp(p^2-s^2)$

Will make a replacement. $t=\mp4ps$ Then the solution can be written:

$$x=2(q+1)tkn$$

$$y=(q+t+1)k^2-2(3q+1)tkn+(t-q-1)(10q^2+7q+1)n^2$$

$$z=(t-q-1)k^2-2(3q+1)tkn+(t+q+1)(10q^2+7q+1)n^2$$

$k,n $ - integers asked us. May be necessary, after all the calculations is to obtain a relatively simple solution, divided by the common divisor.

individ
  • 4,301
  • @Ark I don't understand the question. Solving the Pell equation are the standard way , using expansion in continued fractions. – individ Feb 05 '15 at 17:03
  • @Ark I can't help you. My methods calculations aren't published anywhere. Officially banned. You cannot use them. All removed. – individ Feb 05 '15 at 17:08
  • @Ark this is not discussed. – individ Feb 05 '15 at 17:11
  • 1
    @Ark If you can find a copy of Kenneth Rosen's book, Elementary Number Theory, he has a section on solving Pell's equation. This is through continued fractions if I recall correctly. – Joel Feb 05 '15 at 22:27
  • @individ: Is there a page or book somewhere which outlines your methods of deriving these formulas? Feel free to email me privately, if you wish. Thank you! – Kieren MacMillan Aug 22 '17 at 16:02
  • @KierenMacMillan I myself solve the equations. The formulas collected in my Blog. https://artofproblemsolving.com/community/c3046 – individ Aug 22 '17 at 16:33
  • @individ: Yes, I understand you solve the equations yourself. And I've seen your blog. But I’ve never seen a step-by-step solution — only the question, and the formulas. Perhaps you can point me to where you've provided a step-by-step solution to this kind of problem? Thanks. – Kieren MacMillan Aug 22 '17 at 17:40
  • @KierenMacMillan I don't want to talk about it. I have so much fun. To tell anything yet don't want to. – individ Aug 22 '17 at 17:53
  • 1
    @individ: Okay… I get that. =) Looking forward to hearing about it if you’re ever ready. – Kieren MacMillan Aug 22 '17 at 18:04
4

This was a bunch of nonsense characters typed by hand so that the software would not test me with a ``captcha''

   0           1           3
   0           3           1
   1           0           3
   1           3           0
   3           0           1
   3           1           0
   3           9          40
   3          40           9
   5          32         119
   5         119          32
   8          11          65
   8          65          11
   9           3          40
   9          40           3
  11           8          65
  11          65           8
  13          15          96
  13          96          15
  15          13          96
  15          96          13
  32           5         119
  32         119           5
  40           3           9
  40           9           3
  65           8          11
  65          11           8
  96          13          15
  96          15          13
 119           5          32
 119          32           5
Will Jagy
  • 139,541
  • 3
    It feels like cheating, but Mathematica can find these and other solutions with this one-liner: Solve[3 (x^2 + y^2 + z^2) == 10 x y + 10 y z + 10 z x && 50 > x > 0 && 50 > y > 0 && z > 0 && GCD[x, y, z] == 1, {x, y, z}, Integers] – Steve Kass Feb 04 '15 at 23:18
  • I can't figure out what "fgndsxbxgzfb" means... – Bart Michels Feb 06 '15 at 18:31
  • I am also interested in the meaning of "fgndsxbxgzfb". – Vassily Feb 06 '15 at 18:33
  • 2
    @NalRa, I forgot about that. If I just paste computer output and say to post as an answer, the software says that it cannot tell whether I am human, and makes me type in a Captcha to prove I'm a person. However, if I type in one line of nonsense before pasting in the computer output, no such problem. It wouls probably still work if I deleted the nonsense line later... – Will Jagy Feb 06 '15 at 18:50
4

Because the equation is homogenous, the integer solutions can be derived from the rational solutions, in other words swapping between projective and affine form.

I prove below that the set of non-zero rational solutions are common rational multiples of the following (which, conversely, satisfies the equation identically) for any rational parameter t:

$x,\ y,\ z = 2 t - 1,\ 3 t^2 - 8 t + 5,\ t^2 - 6 t + 8$

So, explicitly, the complete set of integer solutions with GCD(x, y, z) = 1 can be expressed as follows, as $m,\ n$ range over coprime integer pairs

$x,\ y,\ z = (2 m - n) n,\ 3 m^2 - 8 m n + 5 n^2,\ m^2 - 6 m n + 8 n^2$

Proof:

Let $p,\ q,\ r = - x + y + z,\ x - y + z,\ x + y - z$

<=> $2 x,\ 2 y,\ 2 z = q + r,\ r + p,\ p + q$

Then $p^2 + q^2 + r^2 = 3 (x^2 + y^2 + z^2) - 2 (x y + y z + z x)$

and $p q + q r + r p = - (x^2 + y^2 + z^2) + 2 (x y + y z + z x)$

So if $a (p^2 + q^2 + r^2) = b (p q + q r + r p)$

then $(3 a + b) (x^2 + y^2 + z^2) = 2 (a + b) (x y + y z + z x)$

So the required equation is obtained with $3 a + b,\ a + b = 3,\ 5$, i.e. $a,\ b = -1,\ 6$ and the original is equivalent to

$p^2 + q^2 + r^2 + 6 (p q + q r + r p) = 0$

If r = 0 then this becomes $(p + 3 q)^2 = 8 q^2$, which for rational $p, q$ has only the solution p = q = 0

Otherwise, we can replace $\frac{p}{r},\ \frac{q}{r}$ by $p,\ q$ respectively and the equation becomes

$q^2 + 6 (p + 1) q + (p^2 + 6 p + 1) = 0$

which for rational $q$ (assuming rational $p$) requires rational $s$ with

$q = 2 s - 3 (p + 1)$

$9 (p + 1)^2 - (p^2 + 6 p + 1) = 4 s^2$

The latter is equivalent to $8 s^2 - (4 p + 3)^2 = 7$

So in view of the obvious rational solution $4 p + 3,\ s = 1, 1$ we can replace in this $4 p + 3,\ s = 2 t u + 1,\ u + 1$

which implies either $u = 0$, which recovers the solution already observed, or $u = \frac{4 - t}{t^2 - 2}$

which gives successively

$p = \frac{- t^2 + 2 t + 1}{t^2 - 2}$

$s = \frac{t^2 - t + 2}{t^2 - 2}$

$q = \frac{2 v^2 - 8 v + 7}{t^2 - 2}$

So the original $p,\ q,\ r$ can be taken as follows, and the result follows

$p,\ q,\ r = - t^2 + 2 t + 1,\ 2 t^2 - 8 t + 7,\ t^2 - 2$

Sanity check: In the expressions for $x, y, z$ take $t = 0$ to give $x, y, z = 1, 5, 8$ and the equation becomes 2.3^3.5 = 2.3^3.5

Regards

John R Ramsden

John R Ramsden
  • 303
  • 1
  • 7
  • I see the OP was really interested in the equation $(3n−3)(x^2+y^2+z^2)=(9n+1)(xy+yz+zx)$ where $n ≡ 1$ (mod 5) [ possibly intending to write $3 n$ instead of $3 n - 3$ ], but I also noticed this question was posted five years ago! If they see my post and this comment now, and still want a solution of this more general equation, then add a comment here and I'll keep an eye on this thread. My solution should apply equally to a more general equation of the same form, with 3 and 10 replaced by linear functions of k, provided it has solutions in the field Q(k) (i.e. without contraint on k). – John R Ramsden May 28 '20 at 16:05
2

august 2020, this is the good answer, gradually deleting my others here, limit of 5 per day

ADDED: Another way of saying this: Given integers $B > A > 0,$ with $\gcd(A,B) = 1,$ then there is a solution in integers $x,y,z,$ not all $0,$ to $$ A(x^2 + y^2 + z^2) - B (yz + zx + xy) = 0, $$ if and only if both $B+2A$ and $B-A$ are integrally represented by the binary form $u^2 + 3 v^2.$

ORIGINAL: It is simpler than I had feared. We take $0 < A < B,$ and $\gcd(A,B)=1.$ After that, what we are really concerned about are the two numbers that come up in diagonalizing the form, those being $B + 2A$ and $B-A.$

The form is isotropic over the rationals (and integers) if and only if:

(I) when factoring both $B + 2A$ and $B-A,$ the exponents of $2$ are even.

(II) when factoring both $B + 2A$ and $B-A,$ the exponents of $q$ are even, where $q \equiv 5 \pmod 6$ is a prime.

That's it. Note that we could combine these into one test, for all primes $p \equiv 2 \pmod 3.$

Here is an example, $$ 6(x^2 + y^2 + z^2) = 55 (yz+zx+xy) $$ All primitive solutions can be found by ordering the elements of three Pythagorean Triple type recipes for $(x,y,z).$ The theorem is that a finite number of such recipes succeed; for this problem the count required has turned out to be one of $1,2,3,4,6,8,12,16.$ That is, either $2^k$ or $3 \cdot 2^k$ The quadratic form is so symmetric that each matrix of coefficients comes out in an amusing cyclic pattern.

$$ x= 48 u^2 + 97uv + 34v^2 \; , \; \; y= 34 u^2 -29uv -15v^2 \; , \; \; z = -15 u^2 -uv + 48 v^2 $$

$$ x= 54 u^2 + 91uv + 25v^2 \; , \; \; y= 25 u^2 -41uv -12v^2 \; , \; \; z = -12 u^2 +17uv + 54 v^2 $$

$$ x= 60 u^2 + 71uv + 9v^2 \; , \; \; y= 9 u^2 -53uv -2v^2 \; , \; \; z = -2 u^2 +49uv + 60 v^2 $$

Here are the three recipes sorted and with the $u,v$ values specified.

august 2020 my good answer

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
         x         y         z  such that x >= |y| >= |z| 
        48        34       -15
        48        34       -15      < 48, 97, 34 >      1  0    
        54        25       -12
        54        25       -12      < 54, 91, 25 >      1  0    
        60         9        -2
        60         9        -2      < 60, 71, 9 >      1  0    
       140       107       -46
       140       107       -46      < 60, 71, 9 >      1  1    
       170        59       -28
       170        59       -28      < 54, 91, 25 >      1  1    
       179        32       -10
       179        32       -10      < 48, 97, 34 >      1  1    
       391       150       -72
       391       150       -72      < 60, 71, 9 >      2  1    
       423        40         6
       423        40         6      < 54, 91, 25 >      2  1     POSITIVE 
       552       525      -206
       552       525      -206      < 54, 91, 25 >      1  3    
       645       414      -188
       645       414      -188      < 48, 97, 34 >      1  3    
       685       354      -168
       685       354      -168      < 60, 71, 9 >      1  3    
       757       204       -90
       757       204       -90      < 48, 97, 34 >      3  1    
       762       189       -80
       762       189       -80      < 60, 71, 9 >      3  1    
       784        90        -3
       784        90        -3      < 54, 91, 25 >      3  1    
       826       747      -300
       826       747      -300      < 60, 71, 9 >      2  3    
       920       818      -331
       920       818      -331      < 54, 91, 25 >      1  4    
       987       540      -254
       987       540      -254      < 54, 91, 25 >      2  3    
      1002       516      -245
      1002       516      -245      < 60, 71, 9 >      3  2    
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
         x         y         z  such that x >= |y| >= |z|

august 2020 my good answer

Will Jagy
  • 139,541
  • @Ark, as I said, I do not know anything about publishing for high school students. As you can see by checking MSE questions, including your recent one on Euler's proof for $x^2 + 3 y^2,$ all of the material is done in introductory university courses in number theory. There really are journals (in the U.S. anyway) for research by undergraduate students. This problem is very nice, but ultimately did not require general quadratic forms techniques ( as in Cassels). – Will Jagy Feb 22 '15 at 20:52
  • @Ark, worked for me just now, http://www.ams.org/cml my last name is Jagy – Will Jagy Feb 22 '15 at 20:54
  • @Ark, notice recent http://www.artofproblemsolving.com/Forum/viewtopic.php?f=57&t=624222 – Will Jagy Feb 22 '15 at 20:56
  • @Ark, publish where??? – Will Jagy Feb 22 '15 at 21:03
  • @Ark, I suppose, if the person so advising is able to endorse you and the intended article. The arXiv does not use referees but demands a certain minimum of, well, credibility. – Will Jagy Feb 22 '15 at 21:09
  • @Ark, I'm using the word credible loosely. I know the rules of the arXiv, they do not demand much but the endorsement thing is set in stone. Suggest you visit local university mathematics library; as an example, the one here is open on Sundays. Perhaps there is one there with suitable hours. – Will Jagy Feb 22 '15 at 21:32
  • @Ark, probably not, I mostly meant for you to look at actual mathematics journals, as well as looking stuff up on Zentralblatt and MathSciNet. Given your degree of, well, ambition, an early visit to department and library is a good idea. I suggest that you avoid graduate students, but if you can see a professor who does number theory at his/her scheduled office hours you can present a copy of your preprint. They might even read it. Meanwhile, don't get anyone angry and use your real name. It is quite tiresome dealing with anonymity. – Will Jagy Feb 22 '15 at 21:40
1

$(3n-3)(x^2+y^2+z^2)=(9n+1)(xy+yz+zx)\implies$

$(7 + 3 n) \Biggl(6 (n - 1) x - (1 + 9 n) (y + z)\Biggr)^2 =\\ 5 (-1 + 3 n) \Bigl(\Biggl(y (7 + 3 n) + z (1 + 9 n)\Biggr)^2 - 24 (-1 + n) (2 + 3 n) z^2\Bigl)$

Let $n,z$ as parameters, then this equation have Pell form.

gp-code:

nxyz()=
{
 for(n=2, 55,
  n19= 1+9*n; n73= 7+3*n;
  D= 5*(3*n-1)*n73;
  if(!issquare(D),
   C= -5*(3*n-1)*24*(n-1)*(2+3*n)*n73;
   Q= bnfinit('x^2-D, 1);
   fu= Q.fu[1]; \\print("Fundamental Unit: "fu);
   N= bnfisintnorm(Q, C); \\print("Fundamental Solutions (Norm): "N"\n");
   for(i=1, #N, ni= N[i];
    for(j=0, 3,
     s= lift(ni*fu^j);
     X= abs(polcoeff(s, 0)); Y= abs(polcoeff(s, 1));  
     if(X^2-D*Y^2==C,
      y= (Y-n19)/n73;
      x= (X/n73+n19*(y+1))/6/(n-1);
      z= lcm(denominator(x),denominator(y));
      x= x*z; y= y*z;
      if(3*(n - 1)*(x^2 + y^2 + z^2) == (9*n + 1)*(x*y + y*z + z*x),
       print("("n", "x", "y", "z")")
      )
     )
    )
   )
  )
 )
};

Output $(n,x,y,z)$:

? \r nxyz.gp
? nxyz()
(2, 263, 3, 39)
(2, 263, 39, 3)
(2, 13, 1, 1)
(2, 2029, 313, 13)
(12, 31259, 9501, 645)
(12, 17390279, 5863461, 15)
(12, 17008338675311, 5734707254439, 645)
(12, 8996620057194221, 3033393402029559, 15)
(12, 23, -3, 15)
(12, 54305687, 18309183, 645)
(12, 28726047317, 9685570983, 15)
(12, 28095079670561213, 9472827435234027, 645)
(12, 27, 3, 5)
(12, 248102969, 83641041, 7095)
(12, 131244443339, 44251732701, 165)
(12, 128361659301988751, 43279743717614349, 7095)
(12, 22431, 7209, 215)
(12, 418643, 140877, 165)
(12, 409856470367, 138191431653, 7095)
(12, 216795018826247, 73096849207503, 165)
(12, 335, -9, 129)
(12, 331085, 111627, 3)
(12, 323820154601, 109182549915, 129)
(12, 171285800223257, 57752490708225, 3)
(12, 345, 99, 11)
(12, 1033625, 348291, 129)
(12, 546912497, 184402665, 3)
(12, 534899570406731, 180352267551945, 129)
(12, 79, 25, 1)
(12, 4720355, 1589181, 1419)
(12, 2498750495, 842504487, 33)
(12, 2443865517463541, 823998956160435, 1419)
(12, 48157, 16165, 43)
(12, 7895, 2607, 33)
(12, 7803215405, 2631010371, 1419)
(12, 4127539903577, 1391684013555, 33)
(12, 157553, 53097, 15)
(12, 154129532603, 51967905117, 645)
(12, 81527354638727, 27488605506693, 15)
(12, 79736606139995013647, 26884818234807767943, 645)
(12, 490499, 164301, 645)
(12, 260315351, 87770589, 15)
(12, 254597561009591, 85842745033119, 645)
(12, 134670267767599349, 45406819349798631, 15)
(12, 2230517, 740223, 7095)
(12, 1189336493, 401008707, 165)
(12, 1163213123733593, 392200959043377, 7095)
(12, 615285638339258987, 207456065037378333, 165)
(12, 3389, 891, 165)
(12, 3714100769, 1252272681, 7095)
(12, 1964596066931, 662403514509, 165)
(12, 1921443711015792671, 647853820469569989, 7095)
(12, 2534577, 854223, 215)
(12, 1340961597, 452132463, 5)
(12, 1311507385382253, 442201384990917, 215)
(12, 693726405183032343, 233903964702072237, 5)
(12, 4269, 1431, 5)
(12, 4187619141, 1411940589, 215)
(12, 2215056036591, 746851186749, 5)
(12, 2166402326572054479, 730446599032512561, 215)
(12, 19423, 6457, 55)
(12, 19132518907, 6450913843, 2365)
(12, 10120215768577, 3412236544783, 55)
(12, 9897925210224031573, 3337286762762271847, 2365)
(12, 55219, 14971, 2365)
(12, 32313529, 10895071, 55)
(12, 31603898624581, 10655897094799, 2365)
(12, 16716992394487381, 5636473932303709, 55)
(12, 48157, 16165, 43)
(12, 25530439, 8608105, 1)
(12, 24969665338195, 8419030436497, 43)
(12, 13207791558649195, 4453275509545459, 1)
(12, 79, 25, 1)
(12, 79727587, 26881705, 43)
(12, 42172242835, 14219229259, 1)
(12, 41245929443880625, 13906903863923347, 43)
(12, 345, 99, 11)
(12, 364261137, 122817255, 473)
(12, 192677832909, 64965249525, 11)
(12, 188445663972161535, 63538287723634977, 473)
(12, 335, -9, 129)
(12, 615189, 207405, 11)
(12, 601703642247, 202876618065, 473)
(12, 318273240551715, 107312295261369, 11)
(12, 22431, 7209, 215)
(12, 12151779, 4097211, 5)
(12, 11884877546769, 4007228148111, 215)
(12, 6286547425375101, 2119637303837199, 5)
(12, 27, 3, 5)
(12, 37947657, 12794463, 215)
(12, 20072833773, 6767964087, 5)
(12, 19631933953623333, 6619305755429517, 215)
(12, 23, -3, 15)
(12, 173372911, 58452229, 2365)
(12, 91709376799, 30921681241, 55)
(12, 89694980300581339, 30242486590433491, 2365)
(12, 31259, 9501, 645)
(12, 292687, 98593, 55)
(12, 286394466067, 96563714203, 2365)
(12, 151489354754713, 51077716550047, 55)
(21, 1417, 426, 48)
(21, 83142331513, 29578439082, 336)
(21, 91315532516753401, 32486110508186634, 48)
(21, 4914317238221204673953257, 1748301175858017549085194, 336)
(21, 2954, 1037, 8)
(21, 87347683, 31073934, 336)
(21, 95935286323747, 34129618776174, 48)
(21, 5162937983728230318259, 1836749666389321064622, 336)
(21, 12839986, 4567617, 168)
(21, 20199, 7158, 16)
(21, 1089383306103, 387555385974, 112)
(21, 1196473731707640183, 425653520240554902, 16)
(21, 166, 27, 24)
(21, 1144496109, 407161938, 112)
(21, 1257004661384493, 447187802705394, 16)
(21, 67648071535180409104413, 24066253210037399689266, 112)
(21, 162, 51, 4)
(21, 376240009, 133849602, 168)
(21, 413226300173881, 147008015858322, 24)
(21, 22238551035757462803577, 7911513042504815726946, 168)
(21, 164382, 58473, 4)
(21, 394819, 140166, 168)
(21, 434131875763, 154445313942, 24)
(21, 23363623933881420691, 8311765239375213222, 168)
(21, 71, 14, 8)
(21, 4929739847, 1753787774, 56)
(21, 5414351751364439, 1926191793195182, 8)
(21, 291383529309669591514199, 103661636443752927469598, 56)
(21, 12514, 4431, 12)
(21, 5178989, 1842362, 56)
(21, 5688269796029, 2023639966826, 8)
(21, 306124944398220177437, 108905993306325509018, 56)
(21, 9536, 3389, 2)
(21, 1702357, 605478, 84)
(21, 1869955422109, 665249129166, 12)
(21, 100635170298651434053, 35801633886681667206, 84)
(21, 1567, 426, 84)
(21, 1964558503, 698904786, 12)
(21, 105726414890938351, 37612878150289098, 84)
(21, 116119714172828328814711, 41310363777438054629874, 12)
(21, 712, 243, 6)
(21, 22308267, 7936266, 28)
(21, 24501335976387, 8716513896258, 4)
(21, 1318585507084135954491, 469095599806853388714, 28)
(21, 23361, 8262, 28)
(21, 25740885657, 9157491966, 4)
(21, 1385294206562535537, 492827665134459174, 28)
(21, 1521473772446088640861641, 541274455119923650488798, 4)
(21, 7591, 2628, 42)
(21, 8462029819, 3010423608, 6)
(21, 455400061126042903, 162011612958193764, 42)
(21, 500167578620665908843883, 177937956269400884789592, 6)
(21, 438, 144, 7)
(21, 8890117, 3162708, 6)
(21, 478439254001089, 170207959681728, 42)
(21, 525471609729598654933, 186940034319557009844, 6)
(21, 40222, 14304, 3)
(21, 100913, 35876, 14)
(21, 110874854861, 39444470048, 2)
(21, 5966938981113611201, 2122778390417863172, 14)
(21, 71, 8, 14)
(21, 116484131, 41440004, 2)
(21, 6268813025048183, 2230172097496232, 14)
(21, 6885060629573009104979, 2449406298176474029988, 2)
(21, 71, 8, 14)
(21, 38292856, 13622934, 3)
(21, 2060802551018062, 733144269794844, 21)
(21, 2263387096192637014984, 805215074623013954982, 3)
(21, 100913, 35876, 14)
(21, 40222, 14304, 3)
(21, 2165060831764, 770234849382, 21)
(21, 2377894353243482254, 845951796011137296, 3)
(21, 438, 144, 7)
(21, 501737268, 178496382, 1)
(21, 27001935493032294, 9606118873595136, 7)
(21, 29656326044900147464932, 10550436038739482164974, 1)
(21, 7591, 2628, 42)
(21, 527118, 187524, 1)
(21, 28367993280288, 10092103054086, 7)
(21, 31156672386592834974, 11084194269277534932, 1)
(21, 23361, 8262, 28)
(21, 693124, 246573, 6)
(21, 37302648961168, 13270666479129, 42)
(21, 40969637906871469348, 14575222285199263197, 6)
(21, 712, 243, 6)
(21, 39189831124, 13942044063, 42)
(21, 43042337210924968, 15312598904334339, 6)
(21, 2316404382684519800324788, 824076328347877344913071, 42)
(21, 1567, 426, 84)
(21, 9081956, 3230963, 2)
(21, 488762846529896, 173880646666007, 14)
(21, 536810049748675969988, 190973760075715894979, 2)
(21, 9536, 3389, 2)
(21, 513489899588, 182677460897, 14)
(21, 563967864007424864, 200635333861190573, 2)
(21, 30350991989079117832003172, 10797568087438115061341201, 14)
(21, 12514, 4431, 12)
(21, 675216370618, 240212732871, 84)
(21, 741592648046669506, 263826536981350143, 12)
(21, 39910204031994469833921946, 14198321609193718386673527, 84)
(21, 71, 14, 8)
(21, 709376086, 252365133, 84)
(21, 779110640492446, 277173813343269, 12)
(21, 41929305404327431789558, 14916630406186233794397, 84)
(21, 394819, 140166, 168)
(21, 164382, 58473, 4)
(21, 8847110986086, 3147418815249, 28)
(21, 9716814856799508798, 3456821775284131641, 4)
(21, 162, 51, 4)
(21, 9294696042, 3306650139, 28)
(21, 10208399269556226, 3631706212978083, 4)
(21, 549384218898584896608714, 195447104722505639044491, 28)
(21, 166, 27, 24)
(21, 12222111382, 4348097451, 168)
(21, 13423590828090502, 4775532081335883, 24)
(21, 722415803611620115127926, 257004246508466775463899, 168)
(21, 20199, 7158, 16)
(21, 12839986, 4567617, 168)
(21, 14102705137762, 5017131532161, 24)
(21, 758963618283224242642, 270006375648288958929, 168)
(21, 2954, 1037, 8)
(21, 160141821914, 56971522493, 56)
(21, 175884357987566762, 62572034929515101, 8)
(21, 9465547739462478924449018, 3367431820301536704807437, 56)
(21, 1417, 426, 48)
(21, 168243422, 59853623, 56)
(21, 184782542228846, 65737623396407, 8)
(21, 9944420270790822529598, 3537793921285983484199, 56)
(32, 71, 21, 3)
(32, 73589, 26823, 3)
(32, 68371913, 24926349, 3)
(32, 63517441391, 23156559201, 3)
(32, 6529, 2203, 103)
(32, 1711769, 607197, 9579)
(32, 1615089143, 588796113, 9579)
(32, 1500441017057, 547015896759, 9579)
(32, 1711769, 607197, 9579)
(32, 6529, 2203, 103)
(32, 6331141, 2307961, 103)
(32, 5881891363, 2144361469, 103)
(32, 71, 21, 3)
(32, 14011, 5053, 31)
(32, 13096813, 4774651, 31)
(32, 12167005897, 4435726357, 31)
(41, 5664, 2079, 4)
(41, 648230352, 238757847, 52)
(41, 438104084544, 161363670519, 4)
(41, 50039371681516272, 18430635481881327, 52)
(41, 1407, 432, 52)
(41, 11548, 4248, 3)
(41, 1319964424, 486172764, 39)
(41, 892092942628, 328578063408, 3)
(41, 1407, 432, 52)
(41, 1048839, 386304, 4)
(41, 119797591527, 44124169872, 52)
(41, 80964740524719, 29821150213344, 4)
(41, 48799, 16884, 624)
(41, 34171543, 12586068, 48)
(41, 3903020849959, 1437571098324, 624)
(41, 2637841596854623, 971576886296628, 48)
(42, 7969, 369, 2337)
(42, 16822903, 6172263, 16359)
(42, 416896849, 153681489, 2337)
(42, 504853232743, 186110082423, 16359)
(42, 19, 3, 3)
(42, 32581, 11973, 21)
(42, 806659, 297363, 3)
(42, 976841701, 360104853, 21)
(42, 71567, 25871, 287)
(42, 1788713, 659321, 41)
(42, 2166199727, 798551711, 287)
(42, 53534310233, 19734995801, 41)
(42, 7969, 369, 2337)
(42, 50181, 18261, 133)
(42, 1249443, 460563, 19)
(42, 1513090101, 557788341, 133)
(51, 85, 4, 25)
(51, 2246261, 827865, 3000)
(51, 383321759, 142194435, 1500)
(51, 260659465109, 96694303185, 3000)
(51, 11321, 765, 3000)
(51, 3240899, 1199535, 1500)
(51, 2206715249, 818598285, 3000)
(51, 93784952264, 34790491635, 375)
(51, 5549, 1185, 600)
(51, 1220231, 452115, 300)
(51, 830334581, 308020065, 600)
(51, 35288987516, 13090812615, 75)
(51, 9491, 3015, 300)
(51, 7027841, 2605965, 600)
(51, 298753751, 110825640, 75)
(51, 812603757929, 301443717885, 600)
(51, 3719, 1275, 60)
(51, 2644709, 980865, 120)
(51, 112413779, 41701020, 15)
(51, 305762950781, 113425910145, 120)
(51, 22049, 7965, 120)
(51, 951644, 352995, 15)
(51, 2588566241, 960255045, 120)
(51, 440052512699, 163242003975, 60)
(51, 201, 45, 20)
(51, 8357, 3057, 24)
(51, 358088, 132831, 3)
(51, 974014325, 361320585, 24)
(51, 79, -5, 40)
(51, 3023, 1116, 3)
(51, 8245865, 3058845, 24)
(51, 1401796619, 520010847, 12)
(51, 365, 9, 120)
(51, 28475, 10536, 15)
(51, 77568245, 28774521, 120)
(51, 13186546055, 4891684731, 60)
(51, 200, 51, 15)
(51, 656345, 243261, 120)
(51, 111636155, 41412471, 60)
(51, 75912045665, 28160353629, 120)
(51, 2060, 639, 75)
(51, 6175685, 2289849, 600)
(51, 1050149735, 389563299, 300)
(51, 714096227165, 264901336521, 600)
(51, 50585, 17709, 600)
(51, 8889635, 3297159, 300)
(51, 6045484265, 2242633461, 600)
(51, 256930931735, 95311170684, 75)
(51, 50585, 17709, 600)
(51, 6081, 2040, 125)
(51, 17502799, 6491035, 1000)
(51, 2975937381, 1103953665, 500)
(51, 2060, 639, 75)
(51, 145339, 52135, 1000)
(51, 25192641, 9344565, 500)
(51, 17131822291, 6355223815, 1000)
(51, 200, 51, 15)
(51, 55191, 20115, 200)
(51, 9479629, 3516385, 100)
(51, 6446286879, 2391316035, 200)
(51, 365, 9, 120)
(51, 79969, 29485, 100)
(51, 54573219, 20244135, 200)
(51, 2319366109, 860392660, 25)
(51, 79, -5, 40)
(51, 30141, 11145, 20)
(51, 20534671, 7617475, 40)
(51, 872720841, 323744760, 5)
(51, 201, 45, 20)
(51, 173731, 64375, 40)
(51, 7388376, 2740785, 5)
(51, 20096247859, 7454909695, 40)
(51, 85, 25, 4)
(51, 65391, 24243, 8)
(51, 2780068, 1031293, 1)
(51, 7561727343, 2805100491, 8)
(51, 531, 183, 8)
(51, 23533, 8728, 1)
(51, 64017003, 23747751, 8)
(51, 10882800265, 4037086645, 4)
(51, 5095, 1819, 40)
(51, 221385, 82116, 5)
(51, 602200975, 223392571, 40)
(51, 102373299645, 37976428041, 20)
(51, 1860, 681, 5)
(51, 5098075, 1891111, 40)
(51, 866684745, 321505581, 20)
(51, 589340567395, 218621942839, 40)
(51, 11321, 765, 3000)
(51, 17560, 6469, 25)
(51, 47957535, 17789979, 200)
(51, 8152807885, 3024367729, 100)
(51, 85, 4, 25)
(51, 405435, 150039, 200)
(51, 69020785, 25603789, 100)
(51, 46933922715, 17410620831, 200)
(52, 87265827, 32385357, 2771)
(52, 1459960973099, 541892263707, 9)
(52, 92048147287974147247338801077, 34165419367023176604883761861, 1467)
(52, 218430685030184926589186837228886079152203, 81074700323244984640952021928026879199483, 9)
(52, 2153, 783, 9)
(52, 137371539031945116491, 50988057645924749097, 1467)
(52, 325983306111787289169901189942697, 120994899822529822409179156770159, 9)
(52, 20552713344229656875318856309726948602653728259979, 7628530190173194062826133687718955675547649314569, 1467)
(52, 23625803, 8768889, 153)
(52, 1489595925019173492378773, 552891839381300285045883, 24939)
(52, 3534818113200842771018599462354087979, 1312014926773376734450543669432841913, 153)
(52, 222864490427906273879838104582592646222270862013280757, 82720391467152578056709729060723124708724980324242619, 24939)
(52, 57313, 21271, 1)
(52, 2223054898745657, 825129077826969, 24939)
(52, 5275319696432786287764084191, 1958035170005975601955549791, 153)
(52, 332600263532425146752562065682195480701388569, 123450909333536721211738813543440164698032057, 24939)
(52, 2702274161, 1003000323, 51)
(52, 47151518843, 17501181513, 489)
(52, 111890778596558634258749, 41530389113585179514643, 3)
(52, 7054530263488799352428867951839315641947, 2618422988302124226949130627353318273929, 489)
(52, 739289, 259743, 8313)
(52, 166984441427201, 61979449203681, 3)
(52, 10528095436957252290397549108559, 3907702722297823999778661509967, 489)
(52, 24983219826937040853661741235001714285233633, 9272996879072957562173947761838531097815809, 3)
(52, 739289, 259743, 8313)
(52, 1810705079410452803, 672077605152835281, 51)
(52, 114161988513920334440985788376914201, 42373391841868689101000875136611071, 8313)
(52, 270906933927627338861500970927626814362048423811, 100552257484502936920291680950911755368111882673, 51)
(52, 47151518843, 17501181513, 489)
(52, 2702274161, 1003000323, 51)
(52, 170373967572005330478362303, 63237536254916614432747929, 8313)
(52, 404298223750622602383461728470474057617, 150062969986439110857051148438085813187, 51)
(52, 57313, 21271, 1)
(52, 3613672152818956111411, 1341283102306646561761, 163)
(52, 8575260959303115911441461891717921, 3182871089622997329721870358572663, 1)
(52, 540656153380082209520978621311915847769444315844723, 200674807237596616898698488971868538441820405999809, 163)
(52, 23625803, 8768889, 153)
(52, 5393000508673, 2001714639859, 163)
(52, 12797615490235134653304247, 4750078225408443559709857, 1)
(52, 806868688454488373932933421852550096065569, 299484649364247716483553654683990289891763, 163)
(52, 2153, 783, 9)
(52, 58479301015729521, 21705704051181393, 2771)
(52, 138771655457564842236928895847, 51507737468423526106814617191, 17)
(52, 8749325506703922571740188861834180695165341777, 3247478454725897149498003876763795701034220657, 2771)
(52, 87265827, 32385357, 2771)
(52, 207101136154068758961, 76869522924283193427, 17)
(52, 13057387310438535438147005908681382883, 4846497473796114860142420438731641581, 2771)
(52, 30985241299866522929367680411548178161339775627889, 11500761225388102414754804352683627625158764415859, 17)
Dmitry Ezhov
  • 1,653