Stuff I've tried: \begin{align} |x^{\frac 1 n}-a^{\frac 1 n}| &< \epsilon \\ |(x^{\frac 1 n}-a^{\frac 1 n})^n| &< \epsilon ^n \\ \left|\sum_{i=0}^{n}C(n,i)x^{\frac in}(-a)^{1-\frac i n}\right| &< \epsilon ^n \end{align}
(it looks like a one but the power on $x$ and $a$ it's actually $\frac i n$)
if we take $\delta \leq 1$
$$ |x| < |a| + 1 \\ \left|\sum_{i=0}^{n}C(n,i)x^{\frac in}(-a)^{1-\frac i n}\right| \leq 2^n(|a| + 1) $$
I would love to be able to say that $\delta = \min \left\{1, \frac \epsilon{2^n(|a|+1)} \right\}$ but this doesn't seem to be the case. I also tried using the $$x^n - y^n = (x-y)(x^{n-1} + ... + y^{n-1})$$ formula but it didn't help much either.
The way I used this formula for $n=3$ for example was: $$|\sqrt[3]x - \sqrt[3]a| < \epsilon \\ |x-a| < \epsilon ( \sqrt[3]{x^2} + \sqrt[3]xa + \sqrt[3]{a^2}) $$ if we use the same trick $\delta \leq 1$ $$( \sqrt[3]{x^2} + \sqrt[3]xa + \sqrt[3]{a^2}) < 3\sqrt[3]{(|a|+1)^2}$$ but even if we set $\delta = \min \left\{1, 3\epsilon \sqrt[3]{(|a|+1)^2}\right\}$ it can't be shown that $|x-a|< \delta$ implies $|\sqrt[3]x - \sqrt[3]a| < \epsilon$