Hint $\ {\rm mod}\ 23\!:\ \underbrace{\color{#c00}{5^{\large 22}}\equiv\color{#c00}1}_{\rm little\ Fermat}\Rightarrow\, 5^{\large 336}\equiv 5^{\large 6+\color{#c00}{22}(15)}\equiv \color{#0a0}{5}^{\large \color{#0a0}{2}\cdot 3}\,\color{#c00}{(5^{\large 22})}^{\large 15}\equiv \color{#0a0}2^{\large 3} \color{#c00}{(1)}^{\large 15}\equiv 8 $
where we have used the fundamental Congruence Product and Power Rules.
Remark $ $ Generally, if $\,a^e\equiv 1\pmod m\,$ then exponents on $\,a\,$ can be considered mod $\,e,\,$ i.e. $\ a^{\large j}\equiv a^{\large k}\pmod m\,\ $ if $\,\ j\equiv k\pmod e.\ $ This may be proved exactly as above, i.e.
$$ \begin{array}{}\color{#c00}{a^{\large e}\equiv 1}\\ j = k\! +\! en\end{array}\Rightarrow\,\ a^{\large j}\equiv a^{\large k+en}\equiv a^{\large k}\color{#c00}{(a^{\large e})}^{\large n}\equiv a^{\large k}\color{#c00}{(1)}^{\large n}\equiv a^k\!\!\pmod m\qquad $$