Need some hints how to solve this: $\sqrt{9-4\sqrt{5}}=$ ?
Thanks.
Need some hints how to solve this: $\sqrt{9-4\sqrt{5}}=$ ?
Thanks.
$\sqrt{9-4\sqrt{5}}=\sqrt{5+4-2\cdot 2\cdot \sqrt{5}}=\sqrt{(\sqrt{5}-2)^{2}}=|\sqrt{5}-2|=\sqrt{5}-2$
\color{#F01C2C}{\rlap{\small\,\,!}{\displaystyle\triangle}}
– AlexR
Feb 02 '15 at 15:19
\triangle
and !
: \stackrel{\color{#F01C2C}{\rlap{\small\,\,!}{\displaystyle\triangle}}}{=}
;-)
– Workaholic
Feb 02 '15 at 15:21
\color{#F01C2C}{\displaystyle\triangle\!\!\!\small!}
: $\stackrel{\color{#F01C2C}{\displaystyle\triangle!!!\small!}}=$
– AlexR
Feb 02 '15 at 15:21
This can be computed by a Simple Denesting Rule:
Here $\ 9-4\sqrt 5\ $ has norm $= 1.\:$ $\rm\ \color{blue}{subtracting\ out}\,\ \sqrt{norm}\ = 1\,\ $ yields $\,\ 8-4\sqrt 5\:$
which has $\, {\rm\ \sqrt{trace}}\, =\, \sqrt{16}\, =\, 4.\ \ \rm \color{brown}{Dividing\ it\ out}\ $ of the above yields $\ \ 2-\sqrt 5$
Remark $\ $ Many more worked examples are in prior posts on this denesting rule.