since
$$x_{n+1}=\dfrac{x^2_{n}+a}{2x_{n}}$$
so we have
$$x_{n+1}-\sqrt{a}=\dfrac{(x_{n}-\sqrt{a})^2}{2x_{n}}\tag{1}$$
$$x_{n+1}+\sqrt{a}=\dfrac{(x_{n}+\sqrt{a})^2}{2x_{n}}\tag{2}$$
$(1)/(2)$ we have
$$\dfrac{x_{n+1}-\sqrt{a}}{x_{n+1}+\sqrt{a}}=\left(\dfrac{x_{n}-\sqrt{a}}{x_n+\sqrt{a}}\right)^2=\cdots=\left(\dfrac{x_{1}-\sqrt{a}}{x_{1}+\sqrt{a}}\right)^{2^{n}}$$
so we have
$$x_{n}=\sqrt{a}\cdot\dfrac{1+\left(\dfrac{x_{1}-\sqrt{a}}{x_{1}+\sqrt{a}}\right)^{2^{n-1}}}{1-\left(\dfrac{x_{1}-\sqrt{a}}{x_{1}+\sqrt{a}}\right)^{2^{n-1}}}$$