Problem 1. Let $f \colon X\to Y$ be a function from the set $X$ to the set $Y$. For a subset $A\subset X$, let $f_*(A)=\{ y\in Y | \exists x\in A\text{ such that }f(x)=y\}$. Prove the following:
(i) The function $f \colon X\to Y$ is one-to-one if and only if $f_*(A\cap B)=f_*(A) \cap f_*(B)$ for all subsets $A$, $B$ of $X$.
(ii) The function $f \colon X\to Y$ is onto if and only if $Y\setminus f_*(A) \subseteq f_*(X\setminus A)$ for all subsets $A$ of $X$.
I've managed to prove the first part of problem 1. Stuck on the second. And completely clueless about problem 2.
My attempt:
Problem 1
i) Suppose $y\in f_*(A \cap B)$. Then $f_*(x)=y$ such that $x \in A \cap B$. Then, $x \in A$ and $x \in B$.
Therefore, $y \in f_*(A)$ and $y \in f_*(B)$.
This implies $y \in f_*(A) \cap f_*(B)$.
Therefore, $f_*(A\cap B)=f_*(A) \cap f_*(B)$.