Find
$$\lim _{x\to \infty }x\Big(\ln\left(x+1\right)-\ln x\Big)$$
Here's how I do it:
$$x\Big(\ln(x+1)-\ln x\Big) = x\Bigg(\ln(x(1+\frac{1}{x}) - \ln x\Bigg)$$ $$x\Big(\ln x + \ln(1+\frac{1}{x}\Big)-\ln x =x\ln\Big(1+\frac{1}{x}\Big)$$ $$\ln\Bigg( \Big(1+\frac{1}{x}\Big)^x \Bigg) \rightarrow \ln 1^\infty = 0$$
What am I doing wrong? The answer is supposed to be $1$, but I get $0$.