How to prove this relation? $$\sum_{i=0}^{n}\frac{2^{-2i}\binom{2i}{i}}{n+i+2}=\frac{2^{4n+2}-\binom{2n+1}{n}^2}{(2n+3)2^{2n+1}\binom{2n+1}{n}}$$ That seems difficult!

- 108,315

- 5,467
-
Where did you find this identity? – Mhenni Benghorbal Feb 01 '15 at 13:59
-
In a book I have not taken up the title,but there are very long time. – user178256 Feb 01 '15 at 14:06
-
One would naturally presume induction, though I haven't tried it – Alan Feb 01 '15 at 14:28
1 Answers
Note: The following answer is divided in three steps. We start with a short
Overview
Step 1: A convenient representation
We transform OPs expression by doing some index shifting and by adding one summand to both sides which considerably simplifies the RHS of OPs expression.
We show OPs expression is equivalent to \begin{align*} \sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{n+i}\frac{1}{2^{2i}}=2^{2n-1}\frac{1}{n}\binom{2n}{n}^{-1}\qquad n\geq 1\tag{1} \end{align*}
Let's denote the LHS of (1) with $A(n)$. We now start finding in
Step 2: A recurrence relation for $$A(n)=\sum_{i=0}^{n-1}\frac{1}{n+i}\frac{1}{2^{2i}}\binom{2i}{i}$$
We will show that \begin{align*} A(n)&=\frac{2n-2}{2n-1}A(n-1)\qquad\qquad n\geq 1\tag{2} \end{align*}
Together with $A(1)=1$ the claim (1) follows.
But in order to prove the recurrence relation (2) we have to show another binomial identity regarding Catalan numbers in an intermediate
Step 3: A nice binomial identity regarding Catalan numbers
The following is valid \begin{align*} \sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i}}=2-\frac{1}{2^{2n-1}}\binom{2n}{n}\qquad\qquad n \geq 1\tag{3} \end{align*}
Note: Identity (3) is interesting. Writing $C_n=\binom{2n}{n}\frac{1}{n+1}$ for the $n$-th Catalan number we get a recurrence relation for $C_n$
\begin{align*} (n+1)\frac{C_n}{4^n}=1-\frac{1}{2}\sum_{i=0}^{n-1}\frac{C_i}{4^i}\qquad \qquad n\geq 0\tag{4} \end{align*} The recurrence relation (4) specifies all Catalan numbers starting from $C_0=1$ when using the convention that the empty sum ($n=0$) is zero.
Another nice aspect regarding (1) is that the LHS is the $(n-1)$-st order Taylor polynomial of the generating function \begin{align*} \frac{1-\sqrt{1-4z}}{2z}=\sum_{n=0}^{\infty}\binom{2n}{n}\frac{1}{n+1}z^n\tag{5} \end{align*} of the Catalan numbers evaluated at $z=\frac{1}{4}$. The series converges uniformly in the open disc $|z|<\frac{1}{4}$ and it also converges at $z=\frac{1}{4}$. We obtain using the RHS of (3) and the generating function from (5): \begin{align*} \lim_{n\rightarrow\infty}\left(2-\frac{1}{2^{2n-1}}\binom{2n}{n}\right)=\left.\frac{1-\sqrt{1-4z}}{2z}\right|_{z=\frac{1}{4}}=2 \end{align*}
And now the gory details.
The following is to prove for $n\geq 0$ \begin{align*} \sum_{i=0}^{n}\binom{2i}{i}\frac{1}{n+i+2}\frac{1}{2^{2i}}=2^{2n+1}\frac{1}{2n+3}\binom{2n+1}{n}^{-1} -\frac{1}{2^{2n+1}}\frac{1}{2n+3}\binom{2n+1}{n} \end{align*}
$$$$
Step 1: A convenient representation
We substitute $n\rightarrow n-2$ in OPs expression and so we have to show for $n\geq 2$
\begin{align*} \sum_{i=0}^{n-2}\binom{2i}{i}\frac{1}{n+i}\frac{1}{2^{2i}}=2^{2n-3}\frac{1}{2n-1}\binom{2n-3}{n-2}^{-1} -\frac{1}{2^{2n-3}}\frac{1}{2n-1}\binom{2n-3}{n-2} \end{align*}
We add at both sides the term with $i=n-1$ and obtain for $n \geq 1$ \begin{align*} \sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{n+i}\frac{1}{2^{2i}}&=2^{2n-3}\frac{1}{2n-1}\binom{2n-3}{n-2}^{-1} -\frac{1}{2^{2n-3}}\frac{1}{2n-1}\binom{2n-3}{n-2}\\ &\qquad+\frac{1}{2^{2n-2}}\frac{1}{2n-1}\binom{2n-2}{n-1}\tag{6}\\ &=2^{2n-3}\frac{1}{2n-1}\binom{2n-3}{n-2}^{-1}\tag{7}\\ &=2^{2n-1}\frac{1}{n}\binom{2n}{n}^{-1} \end{align*}
and (1) follows.
Comment:
In (6) we use $\binom{2n-2}{n-1}=\binom{2n-3}{n-2}\frac{2n-2}{n-1}=2\binom{2n-3}{n-2}$
In (7) we proceed similar to (6) and also use $\binom{2n-1}{n}=\frac{1}{2}\binom{2n}{n}$
Step 2: A recurrence relation for $A(n)$
Let $$A(n)=\sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{n+i}\frac{1}{2^{2i}} \qquad\qquad n\geq 1$$
We obtain
\begin{align*} A(n)&=\frac{1}{n}+\sum_{i=1}^{n-1}\binom{2i}{i}\frac{1}{n+i}\frac{1}{2^{2i}}\tag{8}\\ &=\frac{1}{n}+\sum_{i=0}^{n-2}\binom{2i+2}{i+1}\frac{1}{n+i+1}\frac{1}{2^{2i+2}}\tag{9}\\ &=\frac{1}{n}+\sum_{i=0}^{n-2}\binom{2i}{i}\frac{(2i+2)(2i+1)}{(i+1)^2}\frac{1}{n+i+1}\frac{1}{2^{2i+2}}\\ &=\frac{1}{n}+\sum_{i=0}^{n-2}\binom{2i}{i}\left(\frac{2n+1}{n+i+1}-\frac{1}{i+1}\right)\frac{1}{2^{2i+1}}\tag{10}\\ &=\frac{1}{n}+\frac{2n+1}{n}\sum_{i=0}^{n-2}\binom{2i}{i}\frac{1}{n+i+1}\frac{1}{2^{2i+1}} -\frac{1}{n}\sum_{i=0}^{n-2}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i+1}}\\ &=\frac{1}{n}+\frac{2n+1}{2n}\left(A(n+1)-\binom{2n-2}{n-1}\frac{1}{2n}\frac{1}{2^{2n-2}} -\binom{2n}{n}\frac{1}{2n+1}\frac{1}{2^{2n}}\right)\tag{11}\\ &\qquad-\frac{1}{n}\sum_{i=0}^{n-2}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i+1}}\\ &=\frac{2n+1}{2n}A(n+1)+\frac{1}{n}-\binom{2n-2}{n-1}\frac{2n+1}{n^2}\frac{1}{2^{2n}} -\binom{2n}{n}\frac{1}{n}\frac{1}{2^{2n+1}}\\ &\qquad-\frac{1}{n}\sum_{i=0}^{n-2}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i+1}}\\ &=\frac{2n+1}{2n}A(n+1)+\frac{1}{n}-\binom{2n-2}{n-1}\frac{2n-1}{n^2}\frac{1}{2^{2n}} -\binom{2n}{n}\frac{1}{n}\frac{1}{2^{2n+1}}\tag{12}\\ &\qquad-\frac{1}{n}\sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i+1}}\\ &=\frac{2n+1}{2n}A(n+1)+\frac{1}{n}-\binom{2n}{n}\frac{1}{n}\frac{1}{2^{2n}} -\frac{1}{n}\sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i+1}}\tag{13}\\ \end{align*}
Comment:
In (8) we separate the term with $i=0$
In (9) we shift index $i\rightarrow i-1$
In (10) we perform a partial fraction decomposition
In (11) we replace the left sum with $A(n+1)$ and correct by subtracting the summands for $i=n-1$ and $i=n$
In (12) we add term to the sum $i=n-1$ and update the term with $\binom{2n-2}{n-1}$ accordingly.
When analysing the recurrence relation (13) we focus on the first summand
$$\frac{2n+1}{2n}A(n+1)$$
of the RHS. Let's assume everything else is $0$ on the RHS of (13). Then we get following recurrence relation for $A(n)$
\begin{align*} A(1)&=1\\ A(n)&=\frac{2n-2}{2n-1}A(n-1)\qquad\qquad n\geq 1\\ \end{align*}
We obtain using double factorials \begin{align*} A(n)&=\frac{2n-2}{2n-1}A(n-1)\\ &=\frac{(2n-2)(2n-4)}{(2n-1)(2n-3)}A(n-2)\\ &=\ldots\\ &=\frac{(2n-2)(2n-4)\cdot\ldots\cdot2}{(2n-1)(2n-3)\cdot\ldots\cdot3}A(1)\\ &=\frac{(2n-2)!!}{(2n-1)!!}\\ &=\frac{(2n-2)!!(2n)!!}{(2n-1)!!(2n)!!}\\ &=\frac{2^{n-1}(n-1)!2^nn!}{(2n)!}\\ &=\frac{1}{n}2^{2n-1}\binom{2n}{n}^{-1}\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\Box \end{align*}
and the proof is finished provided we can show according to (13) the validity of
Step 3: A nice binomial identity regarding Catalan numbers
The following is valid \begin{align*} \sum_{i=0}^{n-1}\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i}}=2\left(1-\frac{1}{2^{2n}}\binom{2n}{n}\right)\qquad\qquad n\geq 1\tag{14} \end{align*}
We show this identity (14) using the coefficient of operator $[z^n]$ to denote the coefficient $c_n$ of $z^n$ in a generating function $C(z)=\sum_{n=0}^{\infty}c_nz^n$.
We observe
\begin{align*} \sum_{i=0}^{n-1}&\binom{2i}{i}\frac{1}{i+1}\frac{1}{2^{2i}}\\ &=\sum_{i=0}^{n-1}[z^i]\frac{1-\sqrt{1-z}}{\frac{1}{2}z}\tag{15}\\ &=2[z^{i-1}]\frac{1-\sqrt{1-z}}{z}\frac{1}{1-z}\tag{16}\\ &=2[z^{i-1}]\left(\frac{1}{1-z}-\frac{1}{\sqrt{1-z}}+\frac{1-\sqrt{1-z}}{z}\right)\tag{17}\\ &=2\left(1-\binom{-\frac{1}{2}}{n-1}(-1)^{n-1}+\frac{1}{2n}\binom{2n-2}{n-1}\frac{1}{2^{2n-2}}\right)\tag{18}\\ &=2\left(1-\binom{2n-2}{n-1}\frac{1}{2n-2}+\frac{1}{2n}\binom{2n-2}{n-1}\frac{1}{2^{2n-2}}\right)\\ &=2\left(1-\frac{2n-1}{2n}\binom{2n-2}{n-1}\frac{1}{2^{2n-2}}\right)\\ &=2\left(1-\frac{1}{2^{2n}}\binom{2n}{n}\right)\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\Box \end{align*}
and the last step is now successfully finished!
Comment:
- In (15) we use the generating function for the Catalan numbers in the form
$$\sum_{n=0}^{\infty}\binom{2n}{n}\frac{1}{n+1}\left(\frac{z}{4}\right)^n=\frac{1-\sqrt{1-z}}{\frac{1}{2}z}$$
- In (16) we observe that summing up the coefficients, i.e. $c_n \rightarrow \sum_{i=0}^{n}c_i$ corresponds to multiplication with $\frac{1}{1-z}$. It's just Cauchy multiplication of series
$$\frac{1}{1-z}\sum_{n=0}^{\infty}c_nz^n=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n}c_i\right)z^n$$
In (17) we perform a partial fraction decomposition
In (18) we use $\binom{-\frac{1}{2}}{n}=(-1)^n\binom{2n}{n}\frac{1}{2^{2n}}$
Note: I would appreciate to see a reference of the recurrence relation (7) of the Catalan Numbers \begin{align*} (n+1)\frac{C_n}{4^n}=1-\frac{1}{2}\sum_{i=0}^{n-1}\frac{C_i}{4^i}\qquad \qquad n\geq 0 \end{align*}
Maybe the kind reader could give a hint.

- 108,315
-
Very nice(+1). Very pleased to have the solution to this problem.Thank – user178256 Apr 01 '15 at 14:38
-
@user178256: Thanks for your nice comment! You may be amused to see that my answer to your question is only the second half of my answer to the question regarding this little combinatorial monster! :-) Best regards, – Markus Scheuer Apr 01 '15 at 14:55