Hint $\ $ More generally, suppose we iterate $\,f(x),\,$ a polynomial with integer coefficents that further satisfies the conditions that $\,f(0) = 1 = f(1)\,\ \ $ [yours is $\,f(x) = x^2 - x + 1\,$]
${\rm mod}\ a_i\!:\,\ \color{#c00}{a_{i+1}} \equiv f(a_i) \ \,\equiv\,\ \, f(0) \equiv \color{#c00}1\,\Rightarrow\, (a_{i+1},a_i) = 1$
$\qquad\qquad \color{#0a0}{a_{i+2}} \equiv f(\color{#c00}{a_{i+1}}) \equiv f(\color{#c00}1) \equiv \color{#0a0}1\,\Rightarrow\, (a_{i+2},a_i) = 1$
$\qquad\qquad a_{i+3} \equiv f(\color{#0a0}{a_{i+2}}) \equiv f(\color{#0a0}1) \equiv 1\,\Rightarrow\, (a_{i+3},a_i) = 1$
$\qquad\qquad\qquad\ \vdots\qquad\qquad\qquad\qquad\qquad\qquad\vdots_{\phantom{I_{I_I}}}$
by using $\,\ a\equiv \bar a\, \Rightarrow\, f(a)\equiv f(\bar a),\,$ the Polynomial Congruence Rule.
So the gist is: $ $ iterating $f$ maps $\,0\,$ to the fixed point $1,\,$ universally coprime to any integer.