Any ideas on how to tackle this limit? $$\lim_{x \to 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
I tried many ways but only got more complex stages, not easier ones...
Any ideas on how to tackle this limit? $$\lim_{x \to 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
I tried many ways but only got more complex stages, not easier ones...
Notice that
$$\tan x=x+\frac{x^3}3+o(x^3)$$ so $$\left(\frac{\tan x}{x}\right)^{1/{x^2}}\sim_0\left[\left(1+\frac{x^2}{3}\right)^{3/x^2}\right]^{1/3}\xrightarrow{x\to0}e^{1/3}\tag{$\because [1+1/x]^x\sim_0e$}$$
$$\begin{align}\lim_{x \to0 }\left(\frac{\tan x}{x}\right)^{1/x^2} &=\lim_{x \to0 }e^{\displaystyle \left(\frac1{x^2}\ln\frac{\tan x}x\right)} \\&=\lim_{x \to0 }e^{\displaystyle \left(\frac1{x^2}\frac{\ln\left(1+\left(\frac{\tan x}x-1\right)\right)}{\left(\frac{\tan x}x-1\right)}\left(\frac{\tan x}x-1\right)\right)} \\&=\lim_{x\to0}e^{\displaystyle \left(\frac1{x^2}\left(\frac{\tan x}x-1\right)\right)}\tag{$\because \lim_{x\to0}\frac{\ln(1+ x)}x=1$} \\&=\lim_{x\to0}e^{\displaystyle \left(\frac{\tan x-x}{x^3}\right)}\tag{$*$, proved below} \\&=e^{1/3} \end{align}$$ Now to prove $(*)$ we can use L'Hospital: $$\lim_{x\to0}\frac{\tan x-x}{x^3}=\lim_{x\to0}\frac{\sec^2x-1}{3x^2}=\lim_{x\to0}\frac{2\sec^2 x\tan x}{6x}=\lim_{x\to0}\frac13\underbrace{\frac{\tan x}{x}}_1\underbrace{\sec^2x}_1=\frac13$$ Or Taylor: $$\lim_{x\to0}\frac{\tan x-x}{x^3}=\lim_{x\to0}\frac{(x+x^3/3+O(x^5))-x}{x^3}=\frac13$$
By far the easiest and fastest way: $$\lim_{x \to 0}\left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = \lim_{x \to 0}\exp\left(\frac1{x^2}\ln\left(1 + \frac{x^2}{3}\right)\right) = \lim_{x \to 0}\exp\left(\frac1{x^2}\cdot\frac{x^2}3\right) = e^{1/3}$$
Using the fact that, for $x \to 0$, $$\begin{align} \tan x &\sim x + \frac{x^3}3\\ \ln(1 + x) &\sim x \end{align}$$
First, subtracting $(10)$ from $(9)$ in this answer, we get that $$ \lim_{x\to0}\frac{\tan(x)-x}{x^3}=\frac13\tag{1} $$ Next, since $\lim\limits_{x\to0}\left(1+tx^2\right)^{1/x^2}=e^t$ converges uniformly on compact sets, $$ \begin{align} \lim_{x\to0}\left(\frac{\tan(x)}x\right)^{1/x^2} &=\lim_{x\to0}\left(1+\frac{\tan(x)-x}{x^3}x^2\right)^{1/x^2}\\ &=\lim_{x\to0}\left(1+\frac13x^2\right)^{1/x^2}\\[6pt] &=e^{1/3}\tag{2} \end{align} $$