Although there is nothing wrong with proofs that do, I tried not to reference irrational numbers in the following proof.
Define a Sequence of Squares Converging to $\boldsymbol{2}$
Consider the sequence
$$
a_1=1\quad\text{and}\quad a_{n+1}=\frac{a_n}2+\frac1{a_n}\tag{1}
$$
If $a_n\in[1,2]$, then $(1)$ implies $a_{n+1}\in[1,2]$.
Each $a_n$ is in $\mathbb{Q}\cap[0,2]$ and
$$
\begin{align}
a_{n+1}^2-2
&=\frac{a_n^2}4-1+\frac1{a_n^2}\\
&=\left(\frac{a_n^2-2}{2a_n}\right)^2\tag{2}
\end{align}
$$
For $x\gt0$, $\dfrac{x^2-2}{2x}=\dfrac x2-\dfrac1x$ is monotonically increasing. Therefore, for $a_n\in[1,2]$ we have
$$
-\frac12\le\frac{a_n^2-2}{2a_n}\le\frac12\tag{3}
$$
Combining $(2)$ and $(3)$ gives
$$
\begin{align}
\left|a_{n+1}^2-2\right|
&=\left(\frac{a_n^2-2}{2a_n}\right)^2\\
&=\left|\frac{a_n^2-2}{2a_n}\right|\frac1{2a_n}\left|a_n^2-2\right|\\
&\le\frac14\left|a_n^2-2\right|\tag{4}
\end{align}
$$
which implies
$$
\lim_{n\to\infty}|a_n^2-2|=0\tag{5}
$$
Define an Infinite Cover of $\boldsymbol{\mathbb{Q}\cap[0,2]}$
Consider the open sets
$$
U_n=\left\{x\in\mathbb{Q}\cap[0,2]:|x^2-2|\gt\frac1n\right\}\tag{6}
$$
According to this answer there is no rational number so that $x^2=2$; therefore, we have
$$
\bigcup_{n=1}^\infty U_n=\mathbb{Q}\cap[0,2]\tag{7}
$$
Since $\bigcup\limits_{n=1}^mU_n=U_m$, the union of any finite collection of $U_n$ is another $U_n$. $(5)$ guarantees that no matter how big we choose $n$, there is an $a_{k_n}\not\in U_n$. Since $a_{k_n}\in\mathbb{Q}\cap[0,2]$, there is no $U_n$ that contains all of $\mathbb{Q}\cap[0,2]$.
That is, no finite subset of $\{U_n\}$ can cover all of $\mathbb{Q}\cap[0,2]$. Therefore,
$$
\mathbb{Q}\cap[0,2]\text{ is not compact.}\tag{8}
$$