Find the limit of $$ \lim_{n\to +\infty} n!\left(\frac{e}{n}\right)^n. $$ I have shown that $u_{n+1}>u_n$, but I am not sure where to go from here.
Asked
Active
Viewed 102 times
0
-
1By Stirling's approximation, $$\sqrt{2\pi n} \le n!\left(\frac{e}{n}\right)^n \le e \sqrt{n}$$, so the limit is $\infty$. – achille hui Jan 31 '15 at 03:55
2 Answers
2
By Stirling's approximation we have:
$$n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$$
So we can make comparisons to get:
$$\lim_{n\to +\infty} n!\left(\frac{e}{n}\right)^n \approx \sqrt{2\pi n}\left(\frac{n}{e}\right)^n \times \left(\frac{e}{n}\right)^n$$
Merge the two $\left(\frac{n}{e}\right)^n \times \left(\frac{e}{n}\right)^n \rightarrow (1)^n$. Can you figure out what to do now?

Dair
- 3,064
1
Let $a_n=n!(e/n)^n$. You can see $a_{n+1}/a_{n}>e$, so $lim_{n \rightarrow \infty}a_n$ doesn't exit.

student
- 1,820