$$Rad(I)=\{a \in R | \exists n \in \mathbb{N} \text{ such that } a^n \in I\}$$
$R$ is a commutative ring, $I$ is an ideal.
To show that $Rad(I)$ is an ideal of $R$, we have to show that for $a,b \in Rad(I)$ it stands that $a-b \in Rad(I)$ and for $r\in R$ it stands that $a\cdot r\in Rad(I)$, right??
When $a,b \in Rad(I)$ we have that $a,b \in R$ and $a^n, b^m \in I$.
$a-b \in R$.
But how can we show that $(a-b)^k \in I, k \in \mathbb{N}$ ??