I'm having a hard time proving this theorem from a textbook.
Theorem
For any integer $n \ge 0$, we have $$\sum_{k=0}^{n} {n \choose k} = 2^n$$
Proof
Take $x = y = 1$ in Newton's Binomial Theorem
My work so far
$$ x = y = 1 \\ \sum_{k=0}^n{n \choose k} 1^{n-k}1^k \\ = \sum_{k=0}^n{n \choose k} 1^n $$
Then I tried using concrete examples $$ k=0,\ \binom{n}{0}1^n \qquad \qquad \binom{n}{0} = \frac{n!}{0!(n-0)} = \frac{n!}{n!}=1\\ k=1,\ \binom{n}{1}1^n \qquad \qquad \binom{n}{1} = \frac{n!}{1!(n-1)} = \frac{n!}{(n-1)!}\\ k=2,\ \binom{n}{2}1^n \qquad \qquad \binom{n}{2} = \frac{n!}{2!(n-2)} \\ \vdots \\ k=n,\ \binom{n}{n}1^n \qquad \qquad \binom{n}{n} = \frac{n!}{n!(n-n)} =1\\ =1^n+\cdots+1^n $$
How to prove this?