Start with:
$$F(n+1) = F(n) + F(n-1)$$
Rewrite as:
$$\begin{align} F(n + 1) &= F(n) + F(n-1) \\
F(n) &= F(n) \end{align}$$
which is:
$$\begin{align}
\begin{bmatrix} F(n+1) \\ F(n)\end{bmatrix}
&=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}
\begin{bmatrix} F(n) \\ F(n-1)\end{bmatrix} \\ &=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2
\begin{bmatrix} F(n-1) \\ F(n-2)\end{bmatrix} \\ &=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^3
\begin{bmatrix} F(n-1) \\ F(n-3)\end{bmatrix} \\ & \dots \\ &=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n
\begin{bmatrix} F(1) \\ F(0)\end{bmatrix}
\end{align}$$
Taking $F(0) = 0$ and $F(1) = 1$, you get:
$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n = \begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix}$$
So to use "doubling", we just plug $2n$ into the formula:
$$\begin{align}
\begin{bmatrix} F(2n+1) \\ F(2n)\end{bmatrix}
&=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{2n}
\begin{bmatrix} F(1) \\ F(0)\end{bmatrix} \\ \\ &=
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n}
\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n}
\begin{bmatrix} F(1) \\ F(0)\end{bmatrix} \\ \\ &=
\begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix}
\begin{bmatrix} F(n+1) & F(n) \\ F(n) & F(n-1) \end{bmatrix}
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ \\ &=
\begin{bmatrix} F(n+1)^2 + F(n)^2 \\ F(n)F(n+1) + F(n-1)F(n) \end{bmatrix} \\
\\ ~
\\ & \text{And if you want...}
\\ ~
\\ &=
\begin{bmatrix} F(n+1)^2 + F(n)^2 \\ F(n)F(n+1)+ \bigg(F(n+1) - F(n)\bigg)F(n) \end{bmatrix}\\ \\&=
\begin{bmatrix} F(n+1)^2 + F(n)^2 \\ 2F(n+1)F(n) - F(n)^2 \end{bmatrix}
\end{align}$$
Which isn't actually better than matrix exponentiation asymptotically. And regardless, since the Fibonacci sequence grows exponentially, it will always require exponential time to compute just due to the size of the output. The matrix or "doubling" approach takes you from $O({\rm exp}~x^2)$ to $O({\rm exp}~x)$ asymptotic calculation time, which isn't nothing, but it still isn't exactly tractable either.
Taking F(0)=0 and F(1)=1, you get:
? – Autonomous May 29 '17 at 21:17