compute $I=\lim\limits_{n\to+\infty}\sqrt[n]{\int\limits_0^1x^{n+1}(1-x)\cdots(1-x^n)dx}$
attempt: I tried to evaluate the integral $$\begin{align} \int\limits_0^1x^{n+1}(1-x)\cdots(1-x^n)dx&=\int\limits_0^1x^{n+1}\left(1-x-x^2-x^3+x^5+\cdots\right)dx\\ &=\int\limits_0^1x^{n+1}-x^{n+2}-x^{n+3}-x^{n+4}+x^{n+6}+\cdots dx\\ &=\left.\frac{x^{n+2}}{n+2}-\frac{x^{n+3}}{n+3}-\frac{x^{n+4}}{n+4}-\frac{x^{n+5}}{n+5}+\frac{x^{n+6}}{n+6}+\cdots\right|_0^1\\ &=\frac{1}{n+2}-\frac{1}{n+3}-\frac{1}{n+4}-\frac{1}{n+5}+\frac{1}{n+6}+\cdots \end{align}$$
attempt 2:
I think I can use mean value theorem for integrals
if $f$ are continuous into $[a,b]$ then exists $\xi\in[0,1]$ such that $\int\limits_a^b f(x)dx=f(\xi)(b-a)$
then using it for $[a,b]=[0,1]$ since the function inside integral are continuous, then exists $\xi\in[0,1]$ such that
$$\begin{align} \sqrt[n]{\int\limits_0^1x^{n+1}(1-x)\cdots(1-x^n)dx}&=\sqrt[n]{\xi^{n+1}(1-\xi)\cdots(1-\xi^n)(1-0)}\\ &=\sqrt[n]{\xi^{n+1}(1-\xi)\cdots(1-\xi^n)} \end{align}$$
then making for $n\in\mathbb{N}^*$
$$\begin{align} a_n&=\sqrt[n]{\xi^{n+1}(1-\xi)\cdots(1-\xi^n)}\\ a_{n+1}&=\sqrt[n+1]{\xi^{n+2}(1-\xi)\cdots(1-\xi^n)(1-\xi^{n+1})}\\ &=\sqrt[n+1]{\xi\xi^{n+1}(1-\xi)\cdots(1-\xi^n)(1-\xi^{n+1})}\\ &=\sqrt[n+1]{\xi\left[\sqrt[n]{\xi^{n+1}(1-\xi)\cdots(1-\xi^n)}\right]^n(1-\xi^{n+1})}\\ &=\sqrt[n+1]{a_n^n\xi(1-\xi^{n+1})}\\ a_{n+1}^{n+1}&=a_n^n\xi(1-\xi^{n+1}) \end{align}$$
and $\xi\in(0,1)\Rightarrow\xi^n\in(0,1)\Rightarrow 1-\xi^n\in(0,1)\Rightarrow a_n>0$ and $a_n\in(0,1)$
then
$$\begin{align} a_{1}&=\xi^2(1-\xi)\\ a_{2}&=\sqrt{\xi^3(1-\xi)(1-\xi^2)}\\ &=\sqrt{\xi^3(1-\xi)^2(1+\xi)}\\ &=\xi(1-\xi)\sqrt{\xi(1+\xi)} \end{align}$$
for $\xi\in(0,1)\Rightarrow \xi(1-\xi)>0$
$$\begin{align} 0<\xi&<1+\xi\\ 0<\xi^2&<\xi(1+\xi)=\xi+\xi^2\\ \xi&<\sqrt{\xi(1+\xi)}\\ \xi^2(1-\xi)&<\xi(1-\xi)\sqrt{\xi(1+\xi)}\\ a_1&<a_2 \end{align}$$
then i think if i can proof that $a_{n+1}>a_n,n\in\mathbb{N}^*$ and $\xi\in(0,1)$ then the limit would be $1$