Let the equation $ax^2+bx+c=0$ have the roots $\alpha$ and $\beta$, then what is $\alpha-\beta$ in terms of $a$, $b$, and $c$?
Well, we may write $$(\alpha-\beta)^2=(\alpha+\beta)^2 -4\alpha \beta$$ $$\mbox{or}\ (\alpha-\beta)^2= \left(-\frac{b}{a}\right)^2-4\frac{c}{a}$$ $$\mbox{or}\ (\alpha-\beta)^2 = \frac{b^2}{a^2}-4\frac{c}{a}$$ $$\mbox{or}\ (\alpha-\beta)^2=\frac{b^2-4ac}{a^2}$$ $$\mbox{or}\ \alpha-\beta= \pm\sqrt{\frac{b^2-4ac}{a^2}} $$ $$\mbox{or}\ \alpha-\beta=\pm\frac{\sqrt{b^2-4ac}}{a}.$$
Now, I know that the true value of $\alpha-\beta$ is $\frac{\sqrt{b^2-4ac}}{a}$, but what about $-\frac{\sqrt{b^2-4ac}}{a}$? Should I really get this other value or have I made some mistake or should I ignore the other value?