I am reading "Introduction to Logic" by P Suppes at the moment. In the Chapter 8 - Theory of definitions of it, I 've some confusion, actually about the Conditional Definition. The brief explanation is also given in the book "Axiomatic Set Theory" by the same author.
Suppes tells - A definition must follow Criteria of Eliminability and Criteria of Non-Creativity. In the book He also writes that it is the classical problem to provide restrictions to definitions such that it follow these two criteria. (You can find more details in the book .. - Google Books..) Here I'm confused in the matter of Conditional Definitions.
RULES FOR CONDITIONAL DEFINITIONS OF OPERATION SYMBOLS. An implication $C$ introducing a new operation symbol $O$ is a conditional definition in a theory if and only if $C$ is of the form
$H \Longrightarrow [O(v_1, v_2, ... , v_n)=w \Longleftrightarrow S]$
.and the following restrictions are satisfied:
(i) the variable $w$ is not free
in $H$,
(ii) the variables $v_1, v_2,... , v_n, w$ are distinct,
(iii) $S$ has no free
variables other than $v_1, v_2, ... , v_n, w$,
(iv) $S$ and $H$ are formulas in which
the only non-logical constants are primitive symbols and previously defined
symbols of the theory, and
(v) the formula $H \Longrightarrow (\exists!w)S$ is derivable from
the. axioms and preceding definitions of the theory.
Here The reason behind last four restrictions are well explained in the book, though not directly. But What is the reason behind the first restriction. Why is $w$ is bounded in $H$. What if it is free in $H$ ? Help me.