Let $a,b,c,d$ be positive integers such that $a^2+ab+b^2=c^2+cd+d^2$. Show that $a+b+c+d$ is not prime.
My proof looks like this:
$(a+b)^2 - ab=(c+d)^2-cd$
$(a+b)^2 - (c+d)^2=ab-cd$
$(a+b+c+d)(a+b-c-d)=ab-cd$
$a+b+c+d=\frac{ab-cd}{a+b-c-d}$
I'd like to have $a+b+c+d$ as product (of integers) not quotient