2

How would I go about solving this summation?

$$\sum\limits_{j = i+1}^{n-1} j $$


I'm trying to figure out how to solve this summation using the fact that $\sum\limits_{i = 1}^{k} i= \frac{k(k+1)}{2}$.

The answer I get with my Ti-89 is $-\frac{i^2}{2}-\frac{-i}{2}+\frac{n^2}{2}-\frac{n}{2}$

2 Answers2

4

$$1+2+...+i+(i+1)+...+(n-1)=\frac{(n-1)n}2\\ \frac{i(i+1)}2+(i+1)+...+(n-1)=\frac{(n-1)n}2\\ \sum_{j=i+1}^{n-1}j=\frac12((n-1)n-i(i+1))$$

Empy2
  • 50,853
1

Assuming that $n$ is greater than $i$, we have $$\sum_{j=i+1}^{n-1}j=\sum_{j=1}^{n-1} j-\sum_{j=1}^i j=\binom{n}{2}-\binom{i+1}{2}.$$

Paolo Leonetti
  • 15,423
  • 3
  • 24
  • 57