Find a limit, $$\lim_{x\to 0} \frac{1-\cos{(1-\cos{(1-\cos x)})}}{x^8}$$ without using Maclaurin series. My attempt was to use L'hopital's rule but that's just too much, and chances of not making a mistake trough repetitive differentiation are very low.
2 Answers
Hint: Use repetitively "$1-\cos x=2\sin^2 x/2$" $$\newcommand{\b}[1]{\left(#1\right)} \newcommand{\f}{\frac} \newcommand{\t}{\text} \newcommand{\u}{\underbrace} $$ $$\lim_{x\to0}\frac{1-\cos{(1-\cos{(1-\cos x)})}}{x^8} =\lim_{x\to0}\f{2\sin^2\b{\sin^2\b{\sin^2\b{\f x2}}}}{x^8}\\ =\lim_{x\to0}\f{2\sin^2\b{\color{red}{\sin^2\b{\color{blue}{\sin^2\b{\color{green}{\f x2}}}}}}}{\b{\color{red}{\sin^2\b{\color{blue}{\sin^2\b{\color{green}{\f x2}}}}}}^2}.\f{\b{\color{red}{\sin^2\b{\color{blue}{\sin^2\b{\color{green}{\f x2}}}}}}^2}{\b{\color{blue}{\sin^2\b{\color{green}{\f x2}}}}^4}.\f{\b{\color{blue}{\sin^2\b{\color{green}{\f x2}}}}^4}{\b{\color{green}{\f x2}}^8}.\b{\f 12}^8 \\=\lim_{x\to0}\f1{128}\b{\f{\sin\b{\color{fuchsia}{\sin^2\b{\sin^2\b{\f x2}}}}}{\color{fuchsia}{\sin^2\b{\sin^2\b{\f x2}}}}}^2.\b{\f{\sin\b{\color{purple}{\sin^2\b{\f x2}}}}{\color{purple}{\sin^2\b{\f x2}}}}^4.\b{\f{\sin\b{\color{crimson}{\f x2}}}{\color{crimson}{\f x2}}}^8 \\={\large\f1{128}}\quad\b{\because \f{\sin x}x=1}$$

- 17,716
-
2I wanted to give the same hint! – Mhenni Benghorbal Jan 24 '15 at 09:55
-
@Transcedental edited – RE60K Jan 24 '15 at 10:17
-
@sciona did you see this and this – RE60K Jan 24 '15 at 10:21
-
@ADG =P I see .. nice formatting. – sciona Jan 24 '15 at 10:23
Hint: Use $1-\cos t = 2\sin^2 \frac{t}{2}$ and the chain rule for limit. (ask if you need further hint)

- 3,700