Since:
$$ \left(1-\frac{1}{n}\right)^{k}\frac{1}{k}=\int_{0}^{1-1/n}x^{k-1}\,dx=\frac{1}{k}-\int_{0}^{\frac{1}{n}}(1-x)^{k-1}\,dx $$
we have:
$$ \sum_{k=1}^{n}\left(1-\frac{1}{n}\right)^{k}\frac{1}{k}=H_n-\int_{0}^{\frac{1}{n}}\frac{1-(1-x)^n}{x}\,dx,\tag{1}$$
but since $f_n(x)=\frac{1-(1-x)^n}{x}$ is a positive decreasing function on the interval $\left(0,\frac{1}{n}\right)$ and $\lim_{x\to 0^+}f_n(x) = n$, we have:
$$0\leq \int_{0}^{\frac{1}{n}}f_n(x)\,dx \leq \int_{0}^{\frac{1}{n}}n\,dx = 1,\tag{2} $$
so the initial limit equals:
$$ \lim_{n\to +\infty}\frac{H_n}{\log n}=\color{red}{1}.\tag{3}$$