It seems natural that it should converge, because for any $A\in\mathbb{R}$, $$\int_{-A}^A x\,\mathrm{d}x=\int_{-A}^0 x\,\mathrm{d}x+\int_0^A x\,\mathrm{d}x=\left[\frac{x^2}{2}\right]_{-A}^0+\left[\frac{x^2}{2}\right]_0^A=-\frac{(-A)^2}{2}+\frac{A^2}{2}=0.$$
So the integral is zero for every such value $A$, yet it doesn't converge, according to wolfram alpha. How come?