4

It seems natural that it should converge, because for any $A\in\mathbb{R}$, $$\int_{-A}^A x\,\mathrm{d}x=\int_{-A}^0 x\,\mathrm{d}x+\int_0^A x\,\mathrm{d}x=\left[\frac{x^2}{2}\right]_{-A}^0+\left[\frac{x^2}{2}\right]_0^A=-\frac{(-A)^2}{2}+\frac{A^2}{2}=0.$$

So the integral is zero for every such value $A$, yet it doesn't converge, according to wolfram alpha. How come?

2 Answers2

12

All that is true, but the definition of convergence of integrals of this type is

The integral $\int_{-\infty}^\infty f(x)\,dx$ converges if for each $a$ the integrals $\int_a^{\infty}f(x)\,dx$ and $\int_{-\infty}^a f(x)\,dx$ converge. In this case $$ \int_{-\infty}^\infty f(x)\,dx=\int_{-\infty}^a f(x)\,dx+\int_a^{\infty}f(x)\,dx $$

Since neither $\int_0^\infty x\,dx$ or $\int_{-\infty}^0x\,dx$ converge, the two-sided improper integral does not converge.

3
  • The integral $\displaystyle\int_{-\infty}^\infty x~dx$ diverges for the same reason that $\displaystyle\sum_{n=-\infty}^\infty n$ also diverges.

  • You write that $\displaystyle\int_{-A}^Ax~dx=0$ for all real A. True enough! But $\displaystyle\int_{-A}^{A+B}x~dx\neq0$, for $B\neq0$.

$~\quad~$ Now, let $A\to\infty$ in the latter.

Lucian
  • 48,334
  • 2
  • 83
  • 154