How to find the sum of the following series:
$$1+\frac13\frac14+\frac15\frac1{4^2}+\dots?$$ The general term is $u_n=\frac1{(2n+1)4^n};n\geq 1$.
How to find the sum of the following series:
$$1+\frac13\frac14+\frac15\frac1{4^2}+\dots?$$ The general term is $u_n=\frac1{(2n+1)4^n};n\geq 1$.
HINT:
$$\ln(1+x)=x-\dfrac{x^2}2+\dfrac{x^3}3-\dfrac{x^4}4+\cdots$$
$$\ln(1-x)=-x-\dfrac{x^2}2-\dfrac{x^3}3-\dfrac{x^4}4-\cdots$$
$$\ln(1+x)-\ln(1-x)=?$$
Keep in mind : Taylor series for $\log(1+x)$ and its convergence
By using $\frac{4}{4-x^2}=\frac{1}{2-x}+\frac{1}{2+x}$ we have: $$\sum_{n\geq 0}\frac{1}{(2n+1)4^n}=\sum_{n\geq 0}\int_{0}^{1}\frac{x^{2n}}{4^n}\,dx = \int_{0}^{1}\frac{4\,dx}{4-x^2}=\color{red}{\log 3}.$$
\begin{align*} \sum_{n=0}^{\infty}\frac{1}{2n+1}\frac{1}{4^n}&=2\sum_{n=0}^{\infty}\frac{1}{2n+1}\left(\frac{1}{2}\right)^{2n+1}\\ &=2\,\text{artanh}\left(\frac{1}{2}\right) \end{align*} Since arctanh ($x$) can be expanded as $\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}$ for $|x|<1$.