0

How to find the sum of the following series:

$$1+\frac13\frac14+\frac15\frac1{4^2}+\dots?$$ The general term is $u_n=\frac1{(2n+1)4^n};n\geq 1$.

Anne Bauval
  • 34,650
Learnmore
  • 31,062

3 Answers3

6

HINT:

$$\ln(1+x)=x-\dfrac{x^2}2+\dfrac{x^3}3-\dfrac{x^4}4+\cdots$$

$$\ln(1-x)=-x-\dfrac{x^2}2-\dfrac{x^3}3-\dfrac{x^4}4-\cdots$$

$$\ln(1+x)-\ln(1-x)=?$$

Keep in mind : Taylor series for $\log(1+x)$ and its convergence

  • excellent work +1 – Learnmore Jan 22 '15 at 02:54
  • How did you get the idea that the series would be this one as there is no general technique to view that – Learnmore Jan 22 '15 at 03:29
  • @learnmore, Whenever you have something like $$\frac{x^n}n$$ think of log series for $$\frac{x^n}{n!}$$ think of exponential series. For $$\frac{x^n}{r(r+1)\cdots(r+n-1)}$$ think of http://en.wikipedia.org/wiki/Binomial_series – lab bhattacharjee Jan 22 '15 at 04:47
4

By using $\frac{4}{4-x^2}=\frac{1}{2-x}+\frac{1}{2+x}$ we have: $$\sum_{n\geq 0}\frac{1}{(2n+1)4^n}=\sum_{n\geq 0}\int_{0}^{1}\frac{x^{2n}}{4^n}\,dx = \int_{0}^{1}\frac{4\,dx}{4-x^2}=\color{red}{\log 3}.$$

Jack D'Aurizio
  • 353,855
1

\begin{align*} \sum_{n=0}^{\infty}\frac{1}{2n+1}\frac{1}{4^n}&=2\sum_{n=0}^{\infty}\frac{1}{2n+1}\left(\frac{1}{2}\right)^{2n+1}\\ &=2\,\text{artanh}\left(\frac{1}{2}\right) \end{align*} Since arctanh ($x$) can be expanded as $\sum_{n=0}^{\infty}\frac{x^{2n+1}}{2n+1}$ for $|x|<1$.