Define $F(x) = \int^x_0 f(t)dt$ and suppose $\lim_{x \rightarrow \infty} F'(x) \neq 0$. This means there is $\epsilon > 0$ and an increasing sequence $\{x_n\}$ s.t. $x_n\rightarrow \infty$ and $|F'(x_n)| \geq \epsilon$ for all $n$.
Since $f(x) \in C^1$, $F'(x)$ is uniformly continuous. Thus there is $\delta>0$ s.t. for all $n$, if $|x - y| < \delta$, then $|F'(x) - F'(y)| < \epsilon/2$.
Note that this means for $x \in [x_n, x_n+\delta]$, by the triangle inequality, $|f'(x)| \geq |f'(x_n)| - |f'(x) - f'(x_n)| > \epsilon/2$.
The assumption $\int^\infty_0 f(t)dt < \infty$ means $\lim_{n\rightarrow\infty} |F(x_n + \delta) - F(x_n)| = 0$. However, $|F(x_n + \delta) - F(x_n)| \geq \left|\int^{x_n+\delta}_{x_n} F'(t)dt\right| \geq \int^{x_n+\delta}_{x_n} (\epsilon/2) dt = \epsilon \delta /2 > 0 $. Hence the contradiction.
Therefore, $\lim_{x \rightarrow \infty} F'(x) = \lim_{x \rightarrow \infty} f(x) = 0$.