1

I have a system of congruences: $$ x\equiv 1\pmod 2 \\ x\equiv 2\pmod 3 \\ x\equiv 3\pmod 4 \\ x\equiv 4\pmod 5 \\ x\equiv 5\pmod 6 \\ x\equiv 0\pmod 7 $$

2, 3, 4, 5, 6, 7 are non-pairwise coprime, so i can't use Chinese Reminder Theorem in this case.

$x\equiv 3\pmod 4$ yields $x\equiv 1\pmod 2$ so i can just drop 3-rd equation from the system.

Using this principle i got new system:

$$ x\equiv 1\pmod 2 \\ x\equiv 2\pmod 3 \\ x\equiv 0\pmod 7 \\ $$

Solving this system o got the answer: $497 + 42k$, which is actually wrong.

Right answer i can get here: http://maciejkus.com/chinese_remainder/ , which is: $119 + 420k$

How can i solve this system right?

Joey74
  • 19

1 Answers1

1

$$ x\equiv 1\pmod 2 \\ x\equiv 2\pmod 3 \\ x\equiv 3\pmod 4 \\ x\equiv 4\pmod 5 \\ x\equiv 5\pmod 6 \\ x\equiv 0\pmod 7 $$

$x\equiv 5\pmod 6$ if and only if $x\equiv 1\pmod 2$ and $x\equiv 2\pmod 3$. and both conditions are already on the list. This leaves us with

$$ x\equiv 1\pmod 2 \\ x\equiv 2\pmod 3 \\ x\equiv 3\pmod 4 \\ x\equiv 4\pmod 5 \\ x\equiv 0\pmod 7 $$

$x\equiv 3\pmod 4$ implies that $x\equiv 1\pmod 2$ but not vice-versa. So we keep the first and remove the second.

$$ x\equiv 2\pmod 3 \\ x\equiv 3\pmod 4 \\ x\equiv 4\pmod 5 \\ x\equiv 0\pmod 7 $$

The solution is $x = 119$