4

Evaluate $$\lim_{x\to0} \frac{(1+x)^{1/x}-e}{x}$$

rubik
  • 9,344

1 Answers1

3

We know that $\lim_{x\to0}\color{red}{\frac{e^x-1}{x}}=1$, or we prove it using L'Hospital.

We know that $\lim_{x\to0}\frac{\ln(1+x)}{x}=1$, or we prove it using L'Hospital, or using the previous limit.

Then we take the limit

$$\begin{align}\lim_{x\to0}\frac{(1+x)^{1/x}-e}{x}&=\lim_{x\to0}\frac{e^{\frac{\ln(1+x)}{x}}-e}{x}\\&=e\lim_{x\to0}\left[\color{red}{\frac{e^{\frac{\ln(1+x)}{x}-1}-1}{\frac{\ln(1+x)}{x}-1}}\frac{\frac{\ln(1+x)}{x}-1}{x}\right]\\&=e\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}\end{align}$$

The red part went away because it tends to $1$, due to the first two limits above.

Use L'Hospital with the last limit.

$$\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}=\lim_{x\to0}\frac{\frac{1}{1+x}-1}{2x}=\lim_{x\to0}\frac{-1}{2(1+x)}=-\frac{1}{2}$$

Pp..
  • 5,973