Looking for verification of a proof. Find $\{s_n\}$ a sequence of positive numbers such that $\limsup_{n\to\infty}s_n=\infty$, and $\lim_{n\to\infty}\sigma_n=0$ where $\sigma_n=\frac1{n+1}\sum_{k=0}^ns_n$.
Let $$s_n= \begin{cases} m+1, & \text{if $n=2^m$}\\ \frac1{2^n}, & \text{otherwise} \end{cases}$$
If $2^m\le n<2^{m+1}$,
$$\begin{align} \sigma_n & =\frac1{n+1}\left(\sum_{k=0}^n\frac1{2^k}+\sum_{k=0}^mk-\sum_{k=0}^m\frac1{2^{2^k}}\right)\\ & =\frac1{n+1}\left(2-\frac1{2^n}+{(m+2)(m+1)\over 2}-\sum_{k=0}^m\frac1{2^{2^k}} \right). \end{align}$$
Now for $2^m\le n<2^m-1$,
$$\begin{align} \sigma_n-\sigma_{n+1} & =\frac1{n+1}\left(2-\frac1{2^n}\right)-\frac1{n+2}\left(2-\frac1{2^{n+1}}\right)\\ & +\frac1{(n+1)(n+2)}\left({(m+2)(m+1)\over 2}-\sum_{k=0}^m\frac1{2^{2^k}}\right). \end{align}$$
Note that the last term is clearly positive, and
$$\begin{align} & \frac1{n+1}\left(2-\frac1{2^n}\right)-\frac1{n+2}\left(2-\frac1{2^{n+1}}\right)\\ = & {2\over (n+1)(n+2)}+{1\over 2^{n+1}(n+2)}-{1\over 2^n(n+1)}\\ = &{2^{n+2}-(n+3)\over 2^{n+1}(n+1)(n+2)}. \end{align}$$
This difference is also positive because $2^{n}>n+1$ for $n\ge2$. So, $$\max\{\sigma_n:2^m\le n\le 2^{m}-1\}=\sigma_{2^m}.$$
Therefore to prove $\lim_{n\to\infty}\sigma_n=0$, it suffices to prove $\lim_{m\to\infty}\sigma_{2^m}=0$.
$$\begin{align} \lim_{m\to\infty}\sigma_{2^n} & \le \lim_{m\to\infty}\frac1{2^m+1}\left(2-\frac1{2^{2^m}}+{(m+2)(m+1)\over 2}\right)\\ & =\lim_{m\to\infty}\frac2{2^m+1}-\lim_{m\to\infty}{1\over (2^m+1)2^{2^m}}+\lim_{m\to\infty}{(m+1)(m+2)\over 2(2^m+1)}\\ & = 0. \end{align}$$