Since:
$$\Gamma(z+1)=e^{-\gamma z}\prod_{n\geq 1}\left(1+\frac{z}{n}\right)^{-1}e^{\frac{z}{n}}$$
we have:
$$ \log\Gamma(z+1) = -\gamma z+\sum_{n=1}^{+\infty}\left(\frac{z}{n}-\log\left(1+\frac{z}{n}\right)\right)$$
and by differentiating both sides:
$$ \gamma+\psi(z+1) = \sum_{n=1}^{+\infty}\left(\frac{1}{n}-\frac{1}{n+z}\right)\tag{1}$$
hence the LHS has simple poles with residue $-1$ in the points $z=-1,-2,\ldots$ Since $\psi(x+1)=\frac{1}{x}+\psi(x)$, we can write $(1)$ as:
$$ \gamma+\psi(-z) = \frac{1}{z}+\sum_{n=1}^{+\infty}\left(\frac{1}{n}+\frac{1}{z-n}\right)\tag{2}$$
hence the LHS of $(2)$ has simple poles with residue $1$ for $z=0,1,2,\ldots$. Since $\frac{1}{(z+1)(z+2)^3}$ is holomorphic over $\Re(z)>-1$, we simply have:
$$ \operatorname{Res}\left(f(z),z=n\right)=\frac{1}{(n+1)(n+2)^3}.\tag{3}$$