Is it true that $({\aleph_1})^{\aleph_0} = {\aleph_1}$?
My scenario is as follows:
The cardinal number of $\mathbb R$ is $|\mathbb R|={\aleph_1}$ and the cardinal number of the Cartesian product of countable sets of real numbers $\mathbb R \times \mathbb R \times \mathbb R \times\ldots$ is $({\aleph_1})^{\aleph_0}$. I wonder whether $({\aleph_1})^{\aleph_0}$ is still ${\aleph_1}$?
Also, what is $({\aleph_0})^{\aleph_0}$, the cardinal number of the Cartesian product of countable sets of natural numbers $\mathbb N \times\mathbb N \times\mathbb N \times\ldots$?