1

$∑_{n=1}^\infty$ $n\over2^{n-1}$

or

1 + $2\over2$ + $3\over4$ + $4\over8$ + $5\over16$ + $\ldots$

How to go about evaluating the above, showing that it sums to 4?

Jack
  • 271

3 Answers3

4

For these sorts of problems it is helpful to start with geometric series: $$\sum_{n=0}^\infty x^n = \frac{1}{1-x}.$$ If we differentiate this series we find $$\sum_{n=0}^\infty nx^{n-1} = \sum_{n=1}^\infty nx^{n-1} = \frac{1}{(1-x)^2}.$$ This series is valid for all $x \in (-1,1)$.

Joel
  • 16,256
1

$\sum_{n\geq 1} \frac{n}{2^{n-1}} = f'(1)$ where $f(x) = 2 \sum_{n\geq 0} \frac{x^n}{2^n} = 2 \frac{1}{1 - \frac{x}{2}}$ so that $f'(x) = 2 \frac{\frac{1}{2}}{\left(1-\frac{x}{2}\right)^2}$ and $f'(1) = 4$.

Olórin
  • 12,040
1

prove this by induction $\sum_{i=1}^m\frac{i}{2^{i-1}}=-4\, \left( 1/2 \right) ^{m+1} \left( m+1 \right) -4\, \left( 1/2 \right) ^{m+1}+4 $